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ABSTRACT

The reverberation time (RT) is a very important measure that quanti-
fies the acoustic properties of a room and provides information about
the quality and intelligibility of speech recorded in that room. More-
over, information about the RT can be used to improve the perfor-
mance of automatic speech recognition systems and speech dere-
verberation algorithms. In a recent study, it has been shown that
existing methods for blind estimation of the RT are highly sensi-
tive to additive noise. In this paper, a novel method is proposed to
blindly estimate the RT based on the decay rate distribution. Firstly,
a data-driven representation of the underlying decay rates of sev-
eral training rooms is obtained via the eigenvalue decomposition of
a specially-tailored kernel. Secondly, the representation is extended
to a room under test and used to estimate its decay rate (and hence
its RT). The presented results show that the proposed method outper-
forms a competing method and is significantly more robust to noise.

Index Terms— reverberation time, blind estimation, room
acoustics

1. INTRODUCTION

The reverberation time (RT) is a very important measure that quan-
tifies the acoustic properties of a room. The RT is defined as the
time it takes for the sound to decay by 60 dB once the source has
been switched off [1]. The RT highly depends on the room geome-
try and the reflectivity of the surfaces in the room and is commonly
given by the Sabine or the Eyring equations [2]. In contrast to the
room impulse response (RIR), the RT is independent of the source-
microphone configuration. An estimate of the RT of a room can
serve as an indicator of the quality and the intelligibility of speech
observed in that room. Moreover, it can be used to improve the per-
formance of automatic speech recognition systems [3, 4] and dere-
verberation algorithms [5, 6].

Both channel-based and signal-based methods have been devel-
oped to estimate the RT. The channel-based methods require an es-
timate of the RIR. The most commonly used channel-based method
calculates the energy decay curve of the RIR using the Schroeder
backward integration method [7] and fits a line to its slope in some
range (typically from -5 to -35 dB) depending on the estimated noise
floor. The RT is then computed based on the slope of the line. Al-
though, this provides accurate estimates of the RT, it may not always
be practical or even possible to measure the RIR in a room. There-
fore, it is desirable to be able to estimate the RT directly from an
observed reverberant speech signal. Several methods have been pro-
posed to blindly estimate the RT [8–14]. In [10], Wen et al. proposed
a method that blindly estimates the RT by analyzing the distribution

of decay rates of the observed reverberant speech signal. The au-
thors shown that the negative-side variance of the distribution can be
related to the RT. The method requires a training phase to obtain the
relation between the negative-side variance and the RT. In a recent
study Gaubitch et al. compared three different RT estimation meth-
ods [15]. It was shown that the performance of all existing methods
significantly decreases when the signal-to-noise ratio decreases.

In this paper, we propose a novel method to blindly estimate the
RT based on the decay rate distribution. Instead of using a specific
characteristic of the distribution (such as the negative-side variance
used in [10]), the proposed method empirically reveals the most sig-
nificant underlying parameter of the decay rates of the observed re-
verberant speech signal. It is shown that this parameter is strongly
related to the decay rate of the room. Firstly, a data-driven repre-
sentation of the underlying decay rates of several training rooms is
obtained via the eigenvalue decomposition of a kernel. Unlike com-
mon kernel methods, this kernel is built based on a specially-tailored
distance between the observable decay rate distributions of the rever-
berant speech and is shown to uncover intrinsic geometric informa-
tion on the underlying parameter. Secondly, the representation is
extended to a room under test and used to estimate its decay rate
(and hence its RT). A major advantage of the proposed method is its
robustness to additive noise. The presented results show that the RT
can be estimated with a root mean squared error smaller than 50 ms
for SNRs larger than 0 dB.

2. PROBLEM FORMULATION

In this paper, we assume that each room is characterized by merely a
single decay rate value of the energy envelope, which is independent
of the frequency. Let λr denote the characteristic decay rate of a
room r. Under the Polack model for RIRs [16], the decay rate λr is
related to the RT by [10]

RT “ ´6 lnp10q{λr. (1)

In the following, we rely on the fact that there is a one-to-one map-
ping between the decay rate of a room and the RT. Estimating the
decay rate of a room and estimating the RT are therefore considered
equivalent tasks, which are used interchangeably in this paper.

Let R be a collection of training rooms with various known char-
acteristic decay rates. In each room r P R with a characteristic de-
cay rate λr , we perform L recordings and collect a set of L reverber-
ant speech signals, denoted by txpiqr pnquLi“1. Since each recording
may be made from a different location in the room and the room
itself may be subject to small movements of objects between the dif-
ferent recordings, we assume that the decay rate of the RIR in each
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experiment is slightly perturbed. Let tλpiqr uLi“1 be the set of random
variables that represent the estimates of the decay rates of the energy
envelopes of the RIRs corresponding to the L measurements. Each
variable is expressed as

λpiqr “ λr ` ε
piq (2)

where εpiq is a Gaussian random variable with zero mean and arbi-
trary variance which represents the variation of the i-th recording.

Let λs be a random variable that represents the instantaneous
decay rate of the energy envelope of an anechoic speech. The de-
cay rates of the room and the anechoic speech are unobservable and
may be estimated via the measured reverberant speech. Reverberant
speech in an enclosure is usually modeled as the convolution of the
anechoic speech signal and the RIR. Thus, the energy envelope of the
reverberant speech signal can be viewed as a function of the energy
envelopes of the anechoic speech signal and the RIR. Let λx denote
the observable instantaneous decay rate of the energy envelope of
the reverberant speech, which can be written as

λx “ gpλr, λsq (3)

where g is an arbitrary (possibly nonlinear) function. We note that
for simplicity the room index is omitted from λx.

Our objective in this paper is to recover the decay rate (RT) of
a room from λx without model assumptions. We assume that ac-
curate estimates of λx can be obtained from the observable rever-
berant speech signal. The decay rates can be estimated in the time-
frequency domain according to [10] or in the time-domain according
to [14]. We note that in [10], a model-based analysis was carried
out to determine a closed form expression for g. In this paper, we
restrain from making any model assumptions and propose a data-
driven method.

The general structure of the proposed method is as follows: the
training sets of recordings are used for learning a data-driven rep-
resentation in advance; then, based on the learnt representation, we
propose to estimate the decay rate λr (RT) of an “unseen” room
(r R R) from a single reverberant speech measurement.

3. DECAY RATE DISTRIBUTION

Let fpλrq and qpλsq denote the probability density functions (pdfs)
of λr and λs, respectively. By (3) and by assuming that λr and λs
are independent, the pdf of λx, denoted by ppλxq, is given by

ppλxq “

ż

λx“gpλr,λsq

fpλrqqpλsqdλrdλs. (4)

In practice, we propose to estimate the pdfs of the decay rates of
reverberant speech signals using histograms. By assuming (unreal-
istically) that infinite number of decay rate instances are available
and that their density in each histogram bin is uniform, each coordi-
nate of the histogram can be written as an integration of the pdf over
the corresponding histogram bin.

The above analysis leads to the following observation. The his-
tograms of the observable decay rates of reverberant speech signals
acquired in different recordings in a room is a linear function of
fpλrq, which is the pdf of the decay rate of the room. This observa-
tion motivates processing in the histogram domain and is exploited
in Sec. 4. As a result, we consider the histograms as feature vectors
of the data.

In the presence of measurement noise, the decay rate of the
noisy reverberant speech can be expressed similarly to (3) as λx “

gpλr, λs, ξq, where ξ denotes a noise process. Assuming indepen-
dent noise and following the derivation in (4), the observation that
the histograms of the observable decay rates of the noisy reverberant
speech signals is a linear function of the pdf of the decay rate of the
rooms still holds. Thus, the histograms provide robust features to
noise.

From each training recording x
piq
r pnq we compute the decay

rates in short time frames. Let hpiqr denote the histogram of the decay
rates corresponding to the i-th recording in room r. We compute the
empirical covariance matrix of the histograms from the same train-
ing room as follows

Cr “
1

L

L
ÿ

i“1

phpiqr ´ shrqph
piq
r ´ shrq

T (5)

where shr is the empirical mean of the histograms in r, for all r P R.
The natural variations of the decay rates in different recordings (2)
introduce variations of the corresponding histograms in the observ-
able domain (histograms of the decay rates of the measured rever-
berant speech). In Sec. 4, we exploit these variations, as manifested
in the covariance matrix Cr , to empirically invert the function g and
reveal the decay rates.

4. INTRINSIC DISTANCE FUNCTION AND MODEL

We define a symmetric distance function between pairs of training
feature vectors (histograms) as

d2Cph
piq
r ,hpjqρ q “ ph

piq
r ´ hpjqρ q

T
pC´1

r `C´1
ρ qph

piq
r ´ hpjqρ q (6)

for each r, ρ P R for all i, j.
The distance in (6) is termed the Mahalanobis distance and has

two important properties [17, 18]. The Mahalanobis distance is in-
variant to linear transformations. Thus, according to the analysis in
Sec. 3, in the features (histograms) domain, this distance is invariant
to the distortions imposed on the decay rate by the anechoic speech
and noise. In addition, it can be shown that the Mahalanobis distance
approximates the Euclidean distance between the decay rates of the
room, i.e.,

|λr ´ λρ|
2
“ d2Cph

piq
r ,hpjqρ q `Op}hpiqr ´ hpjqρ }

4
q. (7)

Given the pairwise distances between the desired values, we re-
cover the values themselves through the eigenvalue decomposition
(EVD) of an appropriate Laplace operator [19]. Let WR be an affin-
ity matrix (kernel) between pairs of feature vectors, whose pn,mq-th
element is given by

Wnm
R “ exp

#

´
d2Cph

piq
r ,h

pjq
ρ q

ε

+

(8)

where ε is the kernel scale set according to [20] and n “ rL ` i
and m “ ρL ` j. Let D be a diagonal normalization matrix
whose diagonal elements are Dnn

“
ř

mW
nm
R . Let ĂWR “

D´1{2WRD´1{2 be a normalized kernel that shares the eigenvec-
tors with the normalized graph-Laplacian I ´ ĂWR [21]. It can be
shown that the eigenvectors rϕk of ĂWR reveal the underlying struc-
ture of the data [22–25]. In the following, we assume that the decay
rate of the room is the most significant underlying parameter of the
decay rates of the observed reverberant speech signal. As a result,
we obtain that the principal eigenvector1 of length L|R| represents

1The nontrivial eigenvector corresponding to the largest eigenvalue.
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the L perturbed decay rates of the |R| training rooms, where |R|
denotes the cardinality of R. In particular, the n-th coordinate of the
principal eigenvector relates to the decay rate as

rϕn1 “ φpλpiqr q (9)

where n “ rL`i and φ is a monotonic function. Thus, the principal
eigenvector organizes the feature vectors according to the values of
the decay rates of the rooms up to a monotonic scaling. Furthermore,
since the decay rates of the training rooms are known, we are able to
use them for calibrating the values of the eigenvectors to the values
of the decay rates, as described in Sec. 5.

5. ESTIMATING THE REVERBERATION TIME

Let U denote a collection of “unseen” rooms with unknown RTs.
From each such unseen room u P U , we obtain a single reverberant
speech recording xupnq. Based on the reverberant speech, we com-
pute the histograms (feature vectors) hu for u P U of the decay rates
of the energy envelopes of the signal in short time frames. In this
section, we present the simultaneous estimation of the RTs of all the
unseen rooms, which includes the case of a single unseen room as
well.

We define a non-symmetric distance function between feature
vectors from the unseen rooms and the training rooms as

a2Cphu,h
piq
r q “ phu ´ hpiqr q

TC´1
r phu ´ hpiqr q (10)

for each r P R, u P U , and i “ 1, . . . , L. Similarly to (8), we define
a corresponding non-symmetric affinity matrix A using a Gaussian
as

Aun “ exp

#

´
a2Cphu,h

piq
r q

ε

+

(11)

where n “ rL` i. We note that the construction of A relies merely
on the observed and training data, and does not use the unavailable
covariance matrix of the feature vectors from the unseen rooms. Let
rA “ D´1

A Aω´1, where DA is a diagonal matrix whose diagonal
elements are the sums of rows of A, and ω is a diagonal matrix
whose diagonal elements are the sums of columns of D´1

A A. In
[23, 26], it is shown that

WR “ rAT
rA. (12)

Thus, the eigenvectors ϕk of WR, which represent the training
rooms, can be obtained from the right singular vectors of rA.

Define a new affinity matrix between feature vectors of the un-
seen rooms as WU “ rA rAT . The principal eigenvector of WU
represents the underlying desired decay rates of the unseen rooms.
In addition, the relationship between the eigenvectors of WU and
WR is conveyed by the singular vector decomposition (SVD) of rA.
By definition of the SVD, we obtain

ψk “
1
?
µk

rAϕk (13)

where µk is the k-th eigenvalue of WU andψk is the k-th eigenvec-
tor of WU (and the left singular vector of rA). Thus, for k “ 1, we
obtain the extension of the representation of the underlying desired
decay rates of the unseen rooms.

The above analysis specifies an efficient algorithm, presented in
Algorithm 1, to obtain the representation of the underlying decay

Algorithm 1 Representation of the Decay Rates
Training Stage:

1. Obtain several recordings of reverberant speech from various
training rooms.

2. Compute the decay rates of the reverberant speech signals in
short time frames.

3. For each recording, compute a histogram of the obtained de-
cay rates.

4. For each training room, compute the covariance matrix of the
histograms of different recordings from this room.

5. Build a kernel between the histograms using (6) and (8).

6. Apply EVD on the kernel and view the values of its principal
eigenvector as data-driven representation of the underlying
decay rates of the training rooms.

Testing Stage for a Single Room:
1. Obtain a single recording of reverberant speech signals from

an unseen room.

2. Compute the decay rates in short time frames and the corre-
sponding histogram.

3. Build the non-symmetric kernel between the newly acquired
histogram and the training histograms using (10) and (11).

4. Extend the representation according to (13) to obtain a repre-
sentation of the decay rate of the unseen room.

rates of unseen rooms. We note that the testing stage can be com-
puted efficiently, circumventing the extensive computation of EVD
and SVD of large kernel matrices [27].

We are able to obtain a natural extension of (9), thereby, recover-
ing the decay rates of the unseen rooms up to a monotonic function.
This means that we are able to organize the unseen rooms according
to the values of their decay rates based solely on reverberant speech
recordings from these rooms without the knowledge of the true de-
cay rates (RTs). Exploiting this property to the full extent is beyond
the scope of this paper and will be examined in future publications.

In this work, the decay rates (RTs) of all the training rooms are
known and can be used to estimate the decay rates (RTs) of the un-
seen rooms. The SVD definition in (13) expresses the relationship
between the representation of the decay rates of the training and un-
seen rooms. Since the true decay rates of the training rooms are
known, we exploit the same relationship to estimate the decay rates
of the unseen rooms. Substituting the training decay rates into (13)
and setting k “ 1 yields

λU “
1
?
µ1

rAλR (14)

where λR and λU are vectors consisting of the known decay rates
of the training rooms and the obtained estimates of the decay rates
of the unseen rooms, respectively.

It is worthwhile noting that the non-symmetric kernel implies an
implicit probabilistic model in the features domain [18, 27]. We can
redefine rA as

rAun “ Prphu|hu P Hrq (15)

where Hr represents the local statistical model induced by the train-
ing pair pshr,Crq. In other words, the pu, nq-th element of the non-
symmetric kernel measures the probability to observe the feature
vector hu given that it is associated with the “local” model induced
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Fig. 1. A scatter plot of the obtained embedding in the noiseless
case. Each cross/circle in the figure represents a single recording of
reverberant speech. The y-axis depicts the values of the principal
eigenvector and the x-axis depicts the true RTs.

by pshr,Crq. Furthermore, (10) and (11) imply that this probabil-
ity is normal with shr mean and Cr covariance. Thus, the training
set defines a multi-Gaussian mixture model in the features domain,
where each Gaussian in the mixture is associated with a training
room.

6. EXPERIMENTAL RESULTS

The experimental setup included 40 simulated training rooms with
RTs evenly distributed between 0.2 and 0.8 s. For each training
room, 30 training recordings of speech sampled at 16 kHz from ar-
bitrary locations were used. Each recording consisted of a differ-
ent speech signal (several speakers were used, including both fe-
males and males) of 4 s duration. In each recording, the speech
signal was convolved with the RIR, simulated according to the im-
age method [28] using [29], to obtain the reverberant speech. In the
test stage, an “unseen” room with random RT ranging between 0.2
and 0.8 s was simulated and a recording of a speech signal (differ-
ent from the signals used for training) was used. The decay rates of
the reverberant speech were estimated in the time-frequency domain
according to [10]. Short time frames of 256 samples with 75% over-
lap were used. The estimates were then averaged over the frequency
bins to yield a single decay rate estimate for each time frame. In all
the tested cases, the source-microphone distance was 2 m to attain a
direct-to-reverberant energy ratio smaller than 0 dB.

Figure 1 presents a scatter plot of the obtained embedding. Each
cross/circle in the figure represents a single recording of reverberant
speech. We display 40 training recordings (one from each training
room) and 100 test recordings marked by a cross and a circle, respec-
tively. The y-axis depicts the values of the principal eigenvector ψ1

in the corresponding coordinates and the x-axis depicts the true RTs.
We observe that the principal eigenvector attaches a value for each
reverberant speech recording, which is related to the true RT via a
monotonic function. In particular, we observe that this function is
approximately linear for RTs under 0.5 s.

In Fig. 2, we present a scatter plot of the estimated RTs of 100
test recordings as a function of the true RTs. We observe accurate
estimations with a small variance when the RT is shorter than 0.4 s
and a larger estimation variance for longer RTs. This result coincides
with the obtained embedding depicted in Fig. 1.

To test noise robustness, we repeat the experiment 5 times for
all rooms with RTs ranging from 0.2 until 0.8 s with an additive
white Gaussian noise corrupting the measured signal under signal-
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Fig. 2. A scatter plot of the estimated RT of test recordings as a
function of the true RT in the noiseless case.
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Fig. 3. Error bars summarizing the mean squared estimation error
and the corresponding standard deviation.

to-noise ratio (SNR) conditions of 0, 10, 20, 30 and 40 dB, respec-
tively. We compare the proposed method to the spectral decay dis-
tribution (SDD) method proposed in [10]. The same experimental
setup and the same training and test signals are used in both methods.
Figure 3 shows error bars representing the mean squared estimation
error and the corresponding standard deviation obtained under the
different SNR conditions. The obtained results of the competing
method under high SNR conditions are comparable to the results
reported in [10] for the noiseless case. We observe that the pro-
posed method exhibits lower estimation error and variance than the
competing method. In addition, the proposed method exhibits small
degradation in performance as the SNR decreases whereas the com-
peting method is more sensitive to measurement noise. The results
obtained for the competing method with an SNR smaller than 20 dB
were found incomparable and are therefore omitted.

7. CONCLUSIONS

A novel method for blindly estimating the RT based on recordings of
noisy reverberant speech signals was proposed. An intrinsic geomet-
ric representation of the recordings is recovered using a kernel. This
kernel consists of an affinity metric between the entire distributions
of the decay rates of the recordings. We show that the obtained ge-
ometric representation can be used to accurately estimate the under-
lying RTs. In contrast to previous methods that were found sensitive
to additive noise, the proposed method is data-driven, i.e., restrains
from any model assumptions, and is shown to be much more robust
to additive noise.
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