
USING DYNAMIC CONDITIONAL RANDOM FIELD ON
SINGLE-MICROPHONE SPEECH SEPARATION

Yu Ting Yeung, Tan Lee

Department of Electronic Engineering
The Chinese University of Hong Kong

Hong Kong SAR, China
{ytyeung,tanlee}@ee.cuhk.edu.hk

Cheung-Chi Leung

Institute for Infocomm Research
A?STAR
Singapore

ccleung@i2r.a-star.edu.sg

ABSTRACT

The use of dynamic conditional random field (DCRF) for model-
based single-microphone speech separation is investigated. The
speech sources are represented by acoustic state sequences from
speaker-dependent acoustic models. The posterior probabilities of
the source acoustic states given a speech mixture are inferred with
a maximum entropy probability distribution which is represented
by DCRF. The posterior probabilities are needed for minimum
mean-square error estimation of the speech sources. Loopy be-
lief propagation is applied for the inference. Averaged stochastic
gradient descent and limited-memory BFGS are compared for pa-
rameter estimation. With the log-magnitude spectrum of the speech
mixture as input observation, the proposed method achieves better
separation performance in terms of Blind Source Separation Metrics
(SDR, SAR, SIR) and PESQ than a factorial hidden Markov model
baseline system in our experiments.

Index Terms— single-microphone speech separation, dynamic
conditional random field

1. INTRODUCTION

Single-microphone speech separation is a problem of reconstruct-
ing two or more speech sources from only one speech mixture. The
problem has many potential applications in speech processing, for
example, robust speech recognition in adverse environments and au-
dio information retrieval from live recordings. It is a challenging
problem that represents a special case of speech enhancement un-
der non-stationary interference. It is also an extreme case of under-
determined source separation, which is unlikely to have a unique
source reconstruction.

Statistical model-based approach is among many approaches to
the problem [1]. Its aim is to estimate speech sources given a speech
mixture and the acoustic models of the corresponding sources as
prior information. When the speech sources are modeled as being
generated from the states in the acoustic models, the posterior proba-
bilities of source states given the observations of the speech mixture
are computed accordingly, e.g., by factorial hidden Markov model
(HMM) [2][3]. Factorial HMM models the generation process of
the speech mixture from the speech sources. With the likelihood
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of the speech mixture given the source states and the prior distri-
bution of the source states from the acoustic models, the posterior
probabilities of the underlying source states are computed by Bayes’
Theorem. The speech sources are then reconstructed by approaches
such as minimum mean-square error (MMSE) estimation [4].

The factorial HMM method requires the likelihood of the speech
mixture given the source states. The likelihood can be derived from
an interaction model, which is the probability distribution of the ob-
servations of the speech mixture given the sources. The exact in-
teraction model is computationally intractable [5]. Approximations
such as the MIXMAX model are required [6], and the accuracy of the
approximations can significantly affect the separation performance
[7]. It is also possible to infer the likelihood from training data,
but conditional independence on observations is usually assumed to
maintain computational feasibility. This restricts the integration of
different types of observations for inference.

Conditional random field (CRF) is a Markov random field
(MRF) conditioned on observations [8]. A method based on linear-
chain CRFs was proposed in [9] for single-microphone speech
separation. Different types of observations were integrated in linear-
chain CRFs and maximum a posteriori (MAP) estimation of the
most probable source acoustic state sequences was performed. This
method requires the initial separation results from factorial HMM to
achieve the improved separation performance. Dynamic conditional
random field (DCRF) is a generalization of CRF on an arbitrary
undirected graphical structure [10]. In this paper, we propose to ap-
ply DCRF instead of factorial HMM to compute the required poste-
rior probabilities of the source states for MMSE estimation of speech
sources. The proposed method does not rely on the initial separation
results from factorial HMM for improving the separation perfor-
mance. As a generalization of CRF, different types of observations
can be integrated into the graphical model without assuming condi-
tional independence. Loopy belief propagation (LBP) [11] is applied
for parameter estimation and computing the posterior probabilities
in DCRF. Due to the non-convexity of LBP approximation, we have
also evaluated the separation performance with parameters estimated
by two numerical optimization algorithms, namely limited-memory
Broyden–Fletcher–Goldfarb–Shanno (BFGS) method [12] and av-
eraged stochastic gradient descent (ASGD) [13].

The paper is organized as follows. Section 2 provides the back-
ground of MMSE source estimation in single-microphone speech
separation. The formulation and the inference of DCRF are pre-
sented in Section 3. The experimental setup is presented in Section
4. The speech sources are reconstructed by MMSE estimation. The
separation results are discussed in Section 5. The paper is concluded
in Section 6.
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Fig. 1. An example of factorial HMM for single-microphone speech
separation with two sources. xm,t are the observations of the speech
sources which are hidden variables in the formulation.

2. MMSE ESTIMATION OF SPEECH SOURCES

Let us consider a single-microphone speech separation problem with
M sources. The speech mixture is modeled as instantaneous ad-
dition of speech sources in time domain. Throughout this paper,
we denote m ∈ {1, 2, . . . ,M} as an index of the sources, and
use bold font-face to indicate a frame sequence. After short-time
analysis of the speech signals, we obtain y =(y1, y2, . . . , yT ) and
xm =(xm,1, xm,2, . . . , xm,T ) as the feature sequences of length T
for the observed speech mixture and the mth speech source, respec-
tively. We also denote sm =(sm,1, sm,2, . . . , sm,T ) as the acous-
tic state sequence of source m, which generates xm. There is no
unique solution for source reconstruction. A reasonable estimation
of source xm is the MMSE estimator given the mixture y. The
MMSE estimator of each feature dimension d of xm,t at time index
t, i.e., x̂dm,t = E(xdm,t|y), is expressed as

E(xdm,t|y) =
X

{sm,(t)}

p({sm,(t)}|y)E(xdm,t|y,{sm,(t)}) , (1)

where {sm,(t)} = {s1,t, s2,t, . . . , sM,t} is a set of acoustic states
for all M speech sources {xm,(t)} = {x1,t, x2,t, . . . , xM,t} at time
index t. The index t is parenthesized in the set notations to indicate
that it is a constant index. The expectation E(xdm,t|y,{sm,(t)}) is
the MMSE estimator of xm,t at each feature dimension d, given the
acoustic states {sm,(t)}. The acoustic states are used to derive the
parameters for statistical filtering.

The posterior probability p({sm,(t)}|y) of the source states
given the speech mixture can be considered as a weight on the filter
output E(xdm,t|y,{sm,(t)}). Let {sm} = {s1, s2, . . . , sM} be a set
of acoustic state sequences of all M speech sources, p({sm,(t)}|y)
can be computed by marginalizing the joint density p({sm},y)
and conditioning the probabilities on y. In a generative modeling
approach such as factorial HMM, p({sm},y) is expressed as

p({sm},y) =
Y
t

p(yt|{sm,(t)})×
Y
m

Y
t

p(sm,t|sm,t−1) ,

(2)
where p(sm,1|sm,0) = p(sm,1) is the prior probability of the given
state. A graphical model illustration of factorial HMM for single-
microphone speech separation with two sources is given as in Fig-
ure 1. The likelihood p(yt|{sm,(t)}) is derived from an interaction
model p(yt|{xm,(t)}), such as the MIXMAX model which assumes
ydt ≈ max({xdm,(t)}) in log-spectral domain.
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Fig. 2. An example of DCRF for single-microphone speech separa-
tion with two sources. DCRF is defined according to an undirected
graphical model. Examples of a state feature function fα(·) and an
edge feature function fβ(·) are highlighted.

3. DYNAMIC CONDITIONAL RANDOM FIELD FOR
SPEECH SEPARATION

3.1. Formulation of dynamic conditional random field

An alternative approach to obtaining p({sm,(t)}|y) for MMSE esti-
mation is to infer p({sm}|y) directly from training data. For single-
microphone speech separation, the training data consist of mixture y
and the corresponding source state sequences {sm}. The difficulty
of directly modeling p({sm}|y) is on the determination of a suitable
distribution. The distribution must be consistent to the statistics as-
sociated with y and {sm} in the training data. This problem can be
formulated as an entropy maximization problem [14]. The feasible
solution of p({sm}|y) is known as the maximum entropy probabil-
ity distribution [15],

p({sm}|y) =
exp

P
t

P
k λkfk({sm},y,t)
Z(y)

(3)

where Z(y) =
P
{sm} exp

P
t

P
k λkfk({sm},y,t) is known as

partition function. The function fk({sm},y,t) is the kth feature
function or sufficient statistic associated with y and {sm}. λk is
the corresponding canonical parameter. The conditional probability
p({sm}|y) follows a log-linear model. Conditional independence
is not assumed among the feature functions. Let G = (V, E) be an
undirected graph with a vertex set V and an edge set E . By defining
a set of feature functions {fk} = {fα} ∪ {fβ}, where fα(·) is
a state feature function and fβ(·) is an edge feature function, and
{λk} = {λα} ∪ {λβ} as the corresponding canonical parameters,
Equation 3 can be rewritten as

p({sm}|y) =
1

Z(y)
exp

„X
m

X
t

X
α

λαfα(sm,t, yt)

«
× exp

„ X
(a,b)∈E

X
β

λβfβ(sa, sb)

«
,

(4)

where sm,t is a source state variable associated with node (m, t)
which represents a frame at time index t of source m. The state
variables sa and sb are associated with nodes a and b which are
connected by an edge (a, b) in the edge set E . In this study, fα(·)
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and fβ(·) are defined as,

fα(sm,t, yt) = g(yt, d) (5)

fβ(sa, sb) =

(
1 , if sa = i and sb = j

0 , otherwise
(6)

where i and j denote the specific states of the corresponding acous-
tic models. Two types of state feature functions, g1(yt, d) = ydt and
g2(yt, d) = (ydt )

2 are defined. This choice corresponds to the suffi-
cient statistics for the first and second moments of feature dimension
d of an observed speech mixture yt and the source state at sm,t. An
edge feature function corresponds to a count of a state pair connected
by edge (a, b).

The undirected graphical model defined by Equation 4 can
be represented with a dynamic conditional random field (DCRF)
[10]. Figure 2 illustrates the DCRF applied in this study for single-
microphone separation with two sources. This DCRF is a special
case. In terms of graphical structure, it is a moral graph of the facto-
rial HMM shown as in Figure 1 [16]. This indicates that p({sm}|y)
from both formulations should be the same in an ideal case given
the exact parameters, the same type of observation and an exact in-
ference algorithm. Since the conditional independence of {sm,(t)}
given yt is generally invalid, there are edges connecting the nodes of
different sources at the same time instant to model the dependence.
Note that more arbitrary graphical structures can also be defined
from Equation 4, but we do not investigate them in this study.

3.2. Parameter estimation and inference

The canonical parameters can be estimated by minimizing the nega-
tive conditional log-likelihood on R training samples, i.e.,

L(λ) =−
RX
r=1

»X
m

X
t

X
α

λαfα(srm,t, y
r
t,)

+
X

(a,b)∈E

X
β

λβfβ(s
r
a, s

r
b)− logZ(yr)

–
+ c||λ||22

(7)

where c is a regularization factor and λ is the vector containing all
the canonical parameters. The minimization of L does not have
a closed-form solution due to the regularization term ||λ||22, and
thus is performed by numerical optimization techniques such as
gradient descent. In a generic graphical model, exact computa-
tion of logZ(yr) of the rth training sample is a combinatorial
problem. The computational complexity is exponential to the num-
ber of sources. In gradient descent, logZ(yr) and its gradient
∇λ logZ(yr) are updated at each iteration. It is more preferable
to compute logZ(yr) and its gradient approximately to reduce the
computation.

Approximating logZ(yr) with loopy belief propagation (LBP)
has been successful in solving many graphical model problems [11].
LBP is a message-passing algorithm which ignores the loops in the
graphical structure and computes the messages as in a tree-structured
graphical model. If the LBP algorithm converges, the fixed point is a
zero-gradient point of Bethe free energy [17]. If LBP is applied to a
tree-structured graphical model, it reduces to forward-backward al-
gorithm and computes logZ(yr) exactly. However, for a generic
graphical model, the approximated logZ(yr) is neither a upper-
bound nor a lower-bound of the exact solution. Due to the loss of
convexity of the original problem, suitable numerical optimization
algorithms should be chosen carefully.

LBP also computes the marginal distributions Ba and Bab
over the source state variables sa, sb at each node a and edge
(a, b) respectively. The marginals Ba(sa) and Bab(sa, sb) are
subject to normalization constraints, i.e.,

P
sa
Ba(sa) = 1 andP

sa
Bab(sa, sb) = Bb(sb). The marginals are essential to ap-

proximate the gradient ∇λ logZ(yr) in parameter estimation [15].
They are also needed for computing p({sm,(t)}|y) during speech
separation. The pairwise marginal Bab(sa, sb) can be interpreted
as the joint probability of source states sa and sb, either within the
same source with frames a and b adjacent to each other or from
different sources but at the same time instant. For a two-source case,
let a = (1, t) and b = (2, t) be the nodes representing a frame of
source 1 and a frame of source 2 respectively, at the same time index
t. The posterior probability p(s1,t, s2,t|y) can be approximated
as B(1,t)(2,t)(s1,t, s2,t). When there are M > 2 sources, as the
marginals computed by LBP are only approximations due to the
loops in the graphical structure, p({sm,(t)}|y) is approximated as

p({sm,(t)}|y) ≈
Y
m

B(m,t)(sm,t) . (8)

4. EXPERIMENTAL SETUP

Experiments on single-microphone speech separation with two
sources (M = 2) are carried out. Speech materials of 3 male and
3 female speakers are extracted from the GRID Corpus [18]. The
speech materials are re-sampled into 16 kHz. The experimental data
for each speaker consists of 500 utterances. For each speaker, 450
randomly selected utterances are used as training source utterances.
The remaining 50 utterances are treated as the evaluation source
utterances. The utterances are mixed into 3 sets of speech mixtures,
namely Male+Male, Male+Female and Female+Female, at power
ratio of 0 dB. Each set of speech mixtures consists of a training set
and an evaluation set. The training set contains around 2000 speech
mixtures generated from training source utterances of the speaker
pair. The evaluation set consists of another 2500 speech mixtures
generated from the evaluation source utterances of each speaker pair.
Short-time speech analysis is applied with Hamming window of 32
ms and frame shift of 10 ms.

Speaker-dependent Gaussian mixture models (GMM) with
128 and 512 components are trained from 257-dimensional log-
magnitude spectra from the training source utterances. HMM
acoustic models with 128 and 512 acoustic states are refined from
the speaker-dependent GMMs by ignoring the component weights.
The emission probability density of each state is a multivariate
Gaussian distribution. Instead of the uniform transition probability
densities between acoustic states, the transition probability densities
are updated by iteratively decoding the source state sequences from
the training source utterances by Viterbi algorithm to improve the
separation performance in factorial HMM. This process also pro-
vides the source state sequences as the training data of DCRF. Since
the feature dimension of the acoustic models is high, usually there
is only one acoustic state being dominant at each frame [19].

Factorial HMM with the MIXMAX interaction model is used
as the baseline in our experiments. The observed speech mix-
ture yt is based on 257-dimension log-magnitude spectrum. Sum-
product loopy belief propagation (LBP) [20] is applied to infer
p(s1,t, s2,t|y) with the aforementioned acoustic models.

In DCRF, the training data are composed of 257-dimension log-
magnitude spectrum as the observation of speech mixture yt, and the
corresponding source state sequences for each set of speech mix-
tures. For a fair comparison between factorial HMM and DCRF
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Table 1. Speech separation results of factorial HMM (FHMM) and DCRF in SDR (dB), SAR (dB), SIR (dB) and PESQ. The IDs in the
brackets correspond to the speaker ID in the GRID Corpus.

SDR SAR SIR PESQ SDR SAR SIR PESQ SDR SAR SIR PESQ SDR SAR SIR PESQ

FHMM 5.75 8.98 9.41 2.33 8.86 11.21 13.76 2.57 8.27 10.88 12.41 2.46 7.63 10.36 11.86 2.45

DCRF
(L-BFGS)

6.19 9.83 9.37 2.41 9.58 11.96 14.22 2.67 8.81 11.57 12.74 2.58 8.19 11.12 12.11 2.56

DCRF 
(ASGD)

6.32 10.07 9.35 2.48 9.78 12.19 14.28 2.72 8.99 11.74 12.91 2.63 8.36 11.33 12.18 2.61

FHMM 5.11 8.34 8.81 2.18 7.92 10.36 13.13 2.42 7.29 9.93 11.55 2.26 6.77 9.54 11.16 2.28

DCRF
(L-BFGS)

5.78 9.29 9.14 2.37 8.86 11.23 13.82 2.58 8.11 10.75 12.25 2.43 7.58 10.43 11.74 2.46

DCRF 
(ASGD)

5.87 9.49 9.10 2.41 9.05 11.42 13.98 2.62 8.27 10.96 12.35 2.46 7.73 10.62 11.81 2.50

128

OverallMale (1) + Male (2) Male (17) + Female (18) Female (24)+ Female (25)

512

in computing p(s1,t, s2,t|y), we only investigate the log-magnitude
spectrum observation of speech mixture as in factorial HMM. We
adopt and compare limited-memory BFGS (L-BFGS) [12] and av-
eraged stochastic gradient descent (ASGD) [13] in parameter esti-
mation. L-BFGS is a quasi-Newton method for finding a stationary
point of the objective function. The stationary point corresponds to
a local extrema. ASGD is an online learning algorithm. It has been
found successful in parameter estimation of several statistical mod-
els, including CRF [21]. It updates the parameters with each training
sample, which effectively makes use of the redundancies in training
data. It is also expected that ASGD helps to escape away from some
local extrema for better optimal points due to its stochastic nature.
In the evaluation of speech separation, p(s1,t, s2,t|y) is also approx-
imated by sum-product LBP.

For both factorial HMM and DCRF methods, MMSE esti-
mation of the sources based on Equation 1 is performed with
the same speaker-dependent acoustic models. The expectation
E(xdm,t|y,s1,t, s2,t) is implemented as soft-mask filtering as pro-
posed in [22]. The time-domain source signals are reconstructed
using the phase spectrum of speech mixtures by the overlap-add
method.

5. RESULTS AND DISCUSSION

The reconstructed source signals are compared with the reference
source signals in the corpus. Blind Source Separation Evaluation
Metrics [23] and Perceptual Evaluation of Speech Quality (PESQ)
[24] are adopted as the metrics to signal quality. Source-to-distortion
ratio (SDR) measures the overall distortion of the output signal.
Source-to-artifacts ratio (SAR) measures the artifact introduced by
the separation algorithm. Source-to-interferences ratio (SIR) mea-
sures the amount of remaining interfering sources. PESQ is an
objective metric to predict human perceptual quality. Separation
results with 128 and 512 acoustic states are listed in Table 1. The
results are averaged over 2500 speech mixtures and two speakers in
each evaluation set.

In both cases with 128 and 512 acoustic states, DCRF consis-
tently achieves better overall separation results than factorial HMM.
DCRF generally achieves higher SDR, SAR and SIR for the recon-
structed speech sources, except for the Male + Male set in which
factorial HMM achieves slightly higher SIR for 512 acoustic states.

The improvement in speech quality is also evidenced by the consis-
tently higher average PESQ for DCRF. The separation results with
DCRF trained by ASGD tend to be slightly better than those trained
by L-BFGS. This supports our claim that a suitable numerical opti-
mization algorithm is required for better DCRF training.

DCRF tends to introduce fewer artifacts to the reconstructed
sources. It is evidenced by the significant improvement of SAR.
The overall improvement is nearly 1 dB. Moreover, by utilizing the
log-linear model for the feature functions, frequency components of
log-magnitude spectrum of a speech mixture are not assumed statis-
tically independent. This probably contributes to the performance
improvement.

6. CONCLUSION

The use of dynamic conditional random field (DCRF) for single-
microphone speech separation is investigated in this paper. DCRF is
applied to replace factorial HMM in computing the posterior prob-
abilities of the source states given a speech mixture. The posterior
probabilities are required for MMSE estimation of speech sources.
Experimental results show that when compared with factorial HMM
with the MIXMAX model baseline, DCRF tends to achieve better
signal quality in terms of SAR, SAR, SIR and PESQ for the recon-
structed speech sources. The experiments are based on the same
speaker-dependent acoustic models, log-magnitude spectrum as the
observation of speech mixture, loopy belief propagation for infer-
ence and MMSE estimation for reconstruction of speech sources in
both DCRF and factorial HMM. We have evaluated the separation
performance with parameters estimated by averaged stochastic gra-
dient descent (ASGD) and limited-memory BFGS (L-BFGS). We
opt for ASGD for parameter estimation of DCRF, as separation per-
formance is slightly better than that of by L-BFGS. Several aspects
of speech separation with DCRF deserve further investigation. They
include unsupervised learning of the source state sequences for train-
ing data, discovery and integration of more effective observations for
better inference and the use of more arbitrary graphical structures for
speech separation problem.

Audio samples are available: www.ee.cuhk.edu.hk/~ytyeung/dmmse.htm .
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