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ABSTRACT
Supervised and semi-supervised source separation algorithms
based on non-negative matrix factorization have been shown
to be quite effective. However, they require isolated train-
ing examples of one or more sources, which is often difficult
to obtain. This limits the practical applicability of these al-
gorithms. We examine the problem of efficiently utilizing
general training data in the absence of specific training ex-
amples. Specifically, we propose a method to learn a univer-
sal speech model from a general corpus of speech and show
how to use this model to separate speech from other sound
sources. This model is used in lieu of a speech model trained
on speaker-dependent training examples, and thus circum-
vents the aforementioned problem. Our experimental results
show that our method achieves nearly the same performance
as when speaker-dependent training examples are used. Fur-
thermore, we show that our method improves performance
when training data of the non-speech source is available.

Index Terms— source separation, non-negative matrix
factorization

1. INTRODUCTION

Data-driven approaches [1, 2] have proven quite effective at
separating sources in an audio signal. The workhorse behind
many methods is non-negative matrix factorization (NMF),
which solves the optimization problem:

min.
W,H≥0

D(V ||WH)

where D is a suitably chosen divergence measure, V is the
power or magnitude spectrogram, and W,H are the desired
factors. Because the factors are constrained to be nonnega-
tive, W and H have natural interpretations as the latent spec-
tral features and the activations of those features in the signal,
respectively. A comprehensive survey of this model, includ-
ing a discussion of different choices of D, is provided in [3].

From this model, a typical pipeline for performing data-
driven source separation proceeds as follows [4]. Given iso-
lated training data for the two sources, say speech and noise:

1. Compute the spectrograms VS and VN of the speech
and noise training data, respectively, as well as the
spectrogram V of the mixture signal.
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2. Factorize the spectrograms Vi ≈WiH̃i, i = S,N .

3. Fix the learned spectral features WS , WN from above
and learn the activations H in the mixture signal:

V ≈ [WS WN ]H. (1)

4. The activations can then be partitioned into two blocks

H =

[
HS

HN

]
, one corresponding to the speech, the other

to the noise. From this, the speech part of the mixture
can be recovered as WSHS . This serves as the esti-
mated speech spectrogram, from which we can obtain
the speech waveform estimate by combining it with the
mixture phase, and taking the inverse STFT.

The approach described above is known as supervised sepa-
ration. A similar approach is also possible in the (more realis-
tic) scenario where isolated training data is available for only
one of the two sources. For example, in speech denoising, it
may be possible to obtain isolated noise training data (e.g.,
when the speaker pauses), but not isolated speech training
data. This semi-supervised case requires just a slight modi-
fication to the above algorithm: instead of learning just H in
(1) above, we simultaneously learn WS and H .

A natural next question is whether the knowledge that the
other source is speech can be utilized in some way to im-
prove upon semi-supervised separation or to perform separa-
tion when there is no training data of either source. To know a
sound class, such as speech, is to have a mathematically use-
ful representation of it. We will learn this representation from
data: examples similar to the source we wish to extract.

We refer to such representations as universal audio mod-
els in analogy to universal background models (UBMs) for
speaker verification [5]. Like UBMs, universal audio models
also involve pre-training on a large corpus of examples, but
models may vary as to what features are learned and how they
are used. In the following sections, we propose one model and
demonstrate its effectiveness for separating speech and noise.

2. A UNIVERSAL SPEECH MODEL

In this section, we propose a universal speech model based
on the principle of block sparsity. We focus on the speech
denoising application and discuss a universal speech model,
but the same ideas can potentially be applied to any class of
sounds.
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2.1. Model Training

The block sparsity model decouples the training of the model
from its application. In the training stage, a matrixWi of basis
vectors is learned separately for each speaker in the corpus,
i = 1, ...,M . This can be done using NMF, a probabilistic
model, or even by handcrafting the basis vectors, although we
used NMF in our experiments. The universal speech model is
then obtained by concatenating the learned speech model into
a single large matrix:

WS = [W1 · · · WM ] .

To add a speaker to an existing model, we simply learn its
basis vectors, independently of how the existing model was
learned, thus enabling efficient reuse of data and rendering
extensions to the model trivial.

2.2. Model Fitting

If we have a noise model WN in addition to the universal
speech model, separating speech and noise becomes a prob-
lem of finding the corresponding activations HS and HN as
described in Section 1. However, the number of parameters
is large, possibly more than the number of observations, so
simply findingH ≥ 0 minimizingD(V ||WH) may not yield
the best separation results. In high-dimensional settings, ap-
propriate regularization can be an effective strategy to prevent
overfitting [6].

Block sparsity refers to one choice of regularization. The
intuition is that if the actual speaker or a speaker very similar
to the actual speaker is in the universal model, then supervised
separation using only the basis vectors for that speaker is
close to optimal. This can be achieved by imposing a penalty
Ω that induces block sparsity of HS , where the blocks are the
activations of the individual speaker models. The optimiza-
tion criterion is shown in (2).

min.
W,H≥0

D(V ||WH) + λΩ(HS). (2)

For sufficiently large λ, this penalty encourages only one
speaker model to be used. At the other extreme, λ = 0 corre-
sponds to the case described above where the entire universal
speech model is used. For λ in between these two extremes,
the model is permitted to borrow strength from different
models in case a single speaker model is insufficient.

The parameter λ controls the tradeoff between separation
and artifacts. For λ = 0, the reconstructed sources have few
artifacts but the separation is poor. As λ increases, separa-
tion typically improves at the price of artifacts. See Figure
2 for details. Thus, λ is a tuning parameter with a physical
interpretation that an end user could adjust, depending on the
requirements of the application.

Block sparsity also provides robustness against poorly fit-
ting speech models by omitting them entirely. Figure 1 de-
picts the evolution of the activation matrix H as λ increases
for a universal speech model consisting of two female speak-
ers and one male speaker (K = 20 basis vectors each), as
applied to a test mixture of the first female speaker and mo-
torcycle noise (K = 10 basis vectors). All coefficients are

λ = 0 λ = 64 λ = 128

Time→ Time→ Time→

Fig. 1. The activation matrix H for a 3-speaker universal
speech model for different values of λ.

Penalty Ω(HS)

`1/`∞
∑M

g=1 ||Hg||∞
`1/`2

∑M
g=1 ||Hg||2

log /`1
∑M

g=1 log(ε+ ||Hg||1)
`0/`1 #{g : ||Hg||1 > 0}

Table 1. Examples of common penalties which induce spar-
sity in the blocks Hg . All norms are elementwise over the
matrix entries.

active for λ = 0, the male speaker model is dropped first as
λ increases, and only the basis vectors of the actual speaker
remain for λ sufficiently large. Notice that the noise activa-
tions are not penalized and that the group sparsity comes at
the price of shrinking the coefficients within each group, a
phenomenon that will be discussed in Section 2.3.

2.3. Related Work and Choice of Ω

Block-sparsity-inducing penalties were introduced in [7] and
are also known as group lasso or multitask regression in the
literature. Table 1 describes some common choices for the
penalty Ω. In an audio context, [8] used group sparsity as
a structural assumption to perform unsupervised separation,
while [9] examined its application to speaker identification.

The choice of Ω is a delicate issue. Penalties that in-
duce block sparsity typically involve an outer penalty which
induces sparsity in the norms of the blocks; by forcing the
norms of the blocks to zero, the entries in those blocks are
also forced to zero. For example, the `0/`2 penalty penalizes
the `0 norm (the number of nonzero components) of the `2
norms of the blocks. It is ideal in that it penalizes the number
of blocks without further shrinking the coefficients, but it is
intractable to solve in general. There are a number of relax-
ations of the `0 norm which admit tractable solutions, but all
involve some shrinkage of the coefficients.

A log /`1 penalty is suggested in [8], for which there are
simple multiplicative updates that monotonically decrease the
objective. The convex `1/`2 penalty is considered in [9],
which is fit using heuristic multiplicative updates for which
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monotonicity and convergence are still open questions.

2.4. Algorithms

We propose an algorithm for (2) whereD is Kullback-Leibler
divergence and Ω is log /`1, a problem that will henceforth be
referred to as BKL-NMF (block KL-NMF). First, we consider
the supervised setting, where isolated noise training data is
available and hence W is fixed. An iterative algorithm can be
derived by majorization-minimization. First, using Jensen’s
inequality, we can majorize D for any

∑
k πijk = 1:

D(V ||WH) ≤ −
∑
i,j

Vij
∑
k

πijk logWikHkj

+
∑
i,j

(WH)ij + const. (3)

In particular, we can choose πijk =
WikH̃kj∑
k WikH̃kj

, where H̃
denotes the value of H at the current iteration. Next, since Ω
is concave, we can majorize it by its tangent at H̃: Ω(H) ≤
Ω(H̃) + 〈∇Ω(H̃), H − H̃〉, which yields

λΩ(HS) ≤ λ
∑
g

〈
H̃g

ε+ ||H̃g||1
, Hg

〉
+ const. (4)

The majorizing function (3) + (4) can be minimized exactly
by setting the gradient equal to 0, leading to efficient multi-
plicative updates, shown in Algorithm 1. This is an example
of a concave-convex procedure (CCCP), for which conver-
gence (albeit not to a global optimum) is known [13].

Algorithm 1 Supervised and Semi-supervised BKL-NMF
inputs V , W = [WS WN ] (assuming 1TW = 1)
initialize H
repeat

R← V./(WH)
H ← H.∗(WTR)
for g = 1 : M do

Hg ←
1

1 + λ/(ε+ ||Hg||1)
Hg

end for
if semi-supervised then

WN ←WN .
∗(RHT

N )
WN ←WN ./(11TWN ) (renormalize W )

end if
until convergence return H

.∗ and ./ denote componentwise multiplication and division.

Algorithm 1 differs from standard supervised separation
algorithms [4] only in the blockwise application of a shrink-
age factor. Thus, the universal speech model can be fitted
at effectively the same computational cost as standard NMF
with KL divergence (hereafter, KL-NMF). In fact, from the
end user’s perspective, the relevant comparison is between su-
pervised BKL-NMF and semi-supervised KL-NMF—the two

SDR K
(dB) 5 10 20 30 40 50 100

5 9.60 9.85 9.77 9.60 9.49 9.30 8.96
10 9.82 9.90 9.95 9.64 9.64 9.43 9.02
20 9.72 9.96 9.92 9.68 9.68 9.58 8.99

M 30 9.85 9.84 9.92 9.53 9.66 9.51 8.93
40 9.92 9.93 9.70 9.54 9.22 9.09 8.50
50 9.78 10.03 9.78 9.58 9.43 9.19 8.38

Table 2. The optimal (over λ) Signal-to-Distortion Ratio
(SDR) for different combinations of number of basis vectors
K and number of speakers M in the universal model, aver-
aged over 50 test examples (5 test speakers × 10 noise exam-
ples). The standard error of each estimate was around 0.6.

options when only noise training examples are available. The
latter additionally requires an update of WN , so as a result,
supervised BKL-NMF (for a single λ) can even be faster than
semi-supervised KL-NMF.

In the semi-supervised setting where no training data of
either source is available, only one additional update of the
noise modelWN is required. This is reflected in Algorithm 1.

3. EXPERIMENTS

The experiments described in this section serve two purposes:
to determine the optimal parameter settings for the univer-
sal speech model and to compare its performance to speaker-
dependent models.

3.1. Optimal Parameters for Universal Speech Models

We trained universal speech models with M = 5, 10, 20,
30, 40, 50 male speakers chosen randomly from the TIMIT
speech corpus using standard KL-NMF, and tested on syn-
thetic mixtures of each of 5 held-out speakers and each of 10
noise examples for a total of 50 test examples. We used the
noise examples from [14], which include nonstationary noises
such as computer keyboards and birds. The speech and noise
signals were normalized to have equal power, i.e., a signal-to-
noise ratio of 0 dB.

The other tuning parameter in universal speech models is
the number of basis vectors per speaker. For simplicity, we
assumed that each speaker model had the same number of
basis vectors and considered K = 5, 10, 20, 30, 40, 50, 100.
For each noise example, we used the optimal number of basis
vectors found in [14].

Then, the universal speech model for different values of
λ was applied to the mixture signal and the BSS evaluation
metrics calculated for each separation [15]. The optimal
Signal-to-Distortion Ratio (SDR), a standard single-number
summary of separation performance, over the λ was recorded
for each K and M . The results are shown in Table 2. Al-
though the variability across examples is quite high (the
standard errors of these estimates are around 0.6), the results
suggest that the universal speech model is fairly robust with
respect to choice of K and M .
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Fig. 2. SIR and SAR tradeoff curves for different settings of
number of speakers (M ) and number of basis vectors (K),
as applied to the mixture of speaker mthc0 from the TIMIT
speech database and motorcycle noise.

The tradeoff between Signal-to-Interference Ratio (SIR)
and Signal-to-Artifacts Ratio (SAR) as λ varies, shown in
Figure 2 for a particular test mixture, gives a more compre-
hensive picture of the separation quality. The lines act as
Pareto frontiers; one parameter setting dominates another if
its tradeoff curve lies up and to the right of the latter’s, since
then it is possible to simultaneously improve both SIR and
SAR. For this particular example, K = 10 performs well in
general, and while the performance improves as the number
of speakers M increases, the gain is modest.

In the experiments that follow, we use a universal model
with K = 10 and M = 20.

3.2. Evaluation of Universal Speech Models

As a comparison, we applied supervised and semi-supervised
KL-NMF to each of the 50 test examples from above and
recorded the optimal SDR over different choices of the num-
ber of speech basis vectors. We applied the universal speech
model with the number of basis vectors per speaker fixed at
K = 10 for each of M = 20 speakers and recorded the op-
timal SDR over different choices of the regularization param-
eter λ. In both cases, supervised indicates that both a speech

KL-NMF BKL-NMF w/ Univ.
Speech Model

supervised 10.23 10.41
semi-supervised 7.22 6.23

Table 3. Comparison of using a speech model trained on
speaker dependent training data to using the universal speech
model. The SDR is averaged over 50 test examples.

KL-NMF BKL-NMF w/ Univ.
Speech Model

noise training only 9.27 10.41
no training data — 6.23

Table 4. Comparison of scenarios based on the type of train-
ing data that is provided by the end user. The SDR is averaged
over 50 test examples.

model (either the universal or the speaker-dependent) and a
noise model are used, whereas semi-supervised indicates that
only a speech model is used.

As a proof of concept, we first quantified the performance
loss of using a universal speech model in place of a speaker-
dependent model. The optimal SDRs, averaged over the 50
test examples, are shown in Table 3. We see that the uni-
versal speech model provides comparable performance to the
speaker-dependent model, even performing slightly better in
the supervised case, although this effect is only marginally
significant (t = 2.0, p = .05).

Next, we considered two practical scenarios based on the
type of training data that is provided by the end user.

1. Only noise training data is provided: Semi-supervised
KL-NMF can be used, where a noise model but no
speech model has been provided. This can be com-
pared to supervised separation using BKL-NMF with
the universal speech model, which also requires only a
noise model from the user. As shown in Table 4, BKL-
NMF with the universal speech model performs better
(t = 6.5, p = 4× 10−8).

2. No training data is provided: This is a common real-
world problem that KL-NMF cannot handle. How-
ever, when using BKL-NMF with the universal speech
model, we are able to achieve a separation performance
of about 6 dB SDR, as shown in Table 4.

4. CONCLUSION

We have proposed a method for performing source separation
using general training data in the absence of specific train-
ing examples. Our approach learns a model for each exam-
ple, and uses block sparsity in the fitting to select a subset
of models. The resulting speaker-independent model can be
fit at about the same computational cost as standard NMF
and achieves comparable performance to methods utilizing
speaker-dependent training data. Although our exposition has
focused on speech denoising, the general idea readily extends
to other sources and any number of them.
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