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ABSTRACT

In this paper we present a framework for real time enhance-
ment of speech signals. Our method leverages a new process-centric
approach for sparse and parsimonious models, where the represen-
tation pursuit is obtained applying a deterministic function or pro-
cess rather than solving an optimization problem. We first propose
a rank-regularized robust version of non-negative matrix factoriza-
tion (NMF) for modeling time-frequency representations of speech
signals in which the spectral frames are decomposed as sparse linear
combinations of atoms of a low-rank dictionary. Then, a paramet-
ric family of pursuit processes is derived from the iteration of the
proximal descent method for solving this model. We present several
experiments showing successful results and the potential of the pro-
posed framework. Incorporating discriminative learning makes the
proposed method significantly outperform exact NMF algorithms,
with fixed latency and at a fraction of it’s computational complexity.

Index Terms— Audio denoising, source separation, parsimo-
nious models, neural networks.

1. INTRODUCTION

The problem of isolating or enhancing a speech signal recorded in
a noisy environment has been widely studied in the audio process-
ing community [1, 2]. It becomes particularly challenging when the
background noise is non-stationary, which is a very common situ-
ation in many applications encountered in telephony. We approach
this problem as a monaural source separation method by modeling
the speech as one source, and the noise as the other. This is a natural
approach when the characteristics of both the source of interest and
the noise vary throughout time [3, 4, 5, 6].

The decomposition of time-frequency representations, such as
the power or magnitude spectrogram in terms of elementary atoms
of a dictionary, has become a popular tool in audio processing.
In particular, non-negative matrix factorization (NMF) [7], and its
probabilistic counterpart probabilistic latent component analysis
(PLCA) [8], were shown effective for various speech processing
tasks as speech separation [9, 10], denoising [4, 6, 11], robust auto-
matic speech recognition [12, 13], bandwidth extension [14, 15] and
speaker recognition [16, 17].

NMF and PLCA produce high quality separation results when
the dictionaries for different sources are sufficiently distinct. There
is naturally a compromise between the approximation of the train-
ing data and tightness of the model: the more general is the dic-
tionary the higher is the chance it will include elements that match
spectral patterns in the competing sources. In order to mitigate this
problem, recent approaches have proposed alternative models in or-
der to constrain the solution in meaningful ways, as adding sparsity
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constrains to the activations [10, 18]. However, there is much addi-
tional structure in speech (and noise). For example, speech signals
are monophonic, they will never generate simultaneously two dif-
ferent harmonic sounds with harmonically unrelated pitches. Using
standard NMF reconstruction however, this combination would be
allowed. Different works have proposed to regularize versions of
NMF or PLCA with this motivation, including co-occurrence statis-
tics of the basis functions [3], smoothness of the activation coeffi-
cients [19] and learned temporal dynamics [5, 15]. In all these meth-
ods the model is expressed as the minimization of a cost with a data
fitting term and some structure-promoting penalties.

In contrast to these ideas, in this work we propose a process-
centric approach. Instead of trying to design a regularized optimiza-
tion problem capturing all the variability of speech signals, we pro-
pose to use a simplified model and bridge the gap between the model
and the real signals via learning. Having a deterministic pursuit pro-
cess in lieu of iterative optimization brings significant additional ad-
vantages. The latency and computational complexity is fixed instead
of being data-dependent. While capturing the great advantages of
the NMF paradigm, it allows the inclusion of the model into higher-
level training objective functions without falling into bi-level opti-
mization problems. Our work builds upon recent developments of
fast sparse encoders [20, 21] that were successfully extended to solve
audio classification [22] and music source separation tasks [23]. For
a general presentation of this appoach refer to [24].

In Secion 2 we briefly introduce NMF. In Section 3 we introduce
a new regularized version of NMF for representing speech signals
that includes a regularization term related to the nuclear norm of
the reconstructed spectrogram. This new setting promotes solutions
with low rank and improves robustness with respect to the size of the
dictionaries. Section 4 adapts this model for the speech denoising
problem. Next, in Section 5 we take this model one step further to a
process-centric approach. The process is chosen from a parametric
family of pursuit processes derived from the iteration of the proximal
descent method for the proposed NMF model. Detailed experimental
evaluation on real data is presented in Section 6.

2. NON-NEGATIVE MATRIX FACTORIZATION

Given a non-negative matrix V ∈ RF×N , NMF aims at finding a
factorization V ≈ WH into non-negative matrices W ∈ RF×Q,
H ∈ RQ×N such that FQ + QN � FN . In audio processing,
V is a non-negative representation of the time-frequency domain,
with F frequency samples and N time frames. W is interpreted as
a dictionary with each column representing an elementary spectral
atom while H codes the activation of each atom in the dictionary
throughout the time frames. When Q is small, WH is a low-rank
approximation of V. The factorization is obtained by solving

min
W≥0,H≥0

N∑
i=1

d(vi|[WH]i), (1)
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where d is a scalar cost function. Significant attention has been de-
voted in the literature to the case in which d belongs to the family of
the so-called β-divergences [25], defined as

dβ(a|b) =
F∑
j=1


ai
bi
− log ai

bi
− 1 ifβ = 0

ai log ai/bi + (ai − bi) ifβ = 1
1

β(β−1)
(aβi + (β − 1)bβi − βaib

β−1
i ) else.

This family includes the three most widely used cost functions in
NMF: the Euclidean distance (β = 2), the Kullback-Leibler diver-
gence (β = 1), and the Itakura-Saito divergence (β = 0). One of
the most popular ways of solving (1) is the multiplicative gradient
descent approach introduced in [7] that alternates a descent over W
and H,

W←W.
WT((WH).(β−2).V)

WT(WH).(β−2)
,H← H.

((WH).(β−2).V)HT

(WH).(β−2)HT

where . and division represent element-wise operations.
Online NMF algorithms aim at computing the factorization as

the data comes in. When the dictionary is available a priori, problem
(1) is separable in the columns and then the projection is given by

vt = argmin
h≥0

dβ(vt|Wh). (2)

In many situations, in order to save computational time, (2) is not
solved exactly, as discussed in [26]. [6] set the maximum number
of iterations of the multiplicative algorithm to a value that empiri-
cally provides a good approximation. The update of the dictionary
is performed by minimizing (1) w.r.t. W [26].

3. LOW-RANK SPARSE MODELS

In this section we present a new model for representing speech sig-
nals that builds upon NMF. It is well established that speech signals
can be accurately represented by a low rank model. For example,
clean speech can be reconstructed with perceptually good quality
with as few as 20 dictionary atoms as reported by [6]. However, the
size of the dictionary that gives the best reconstruction is application
dependent. Having more dictionary atoms improves the approxi-
mation of the training data but also allows the dictionary to include
elements that match spectral patterns in the competing sources.

A way to regularize (1) in order to obtain a factorization of
WH that penalizes high rank reconstructions was proposed in
[23]. Recent advances in convex optimization have shown that
rank-regularization can be obtained by minimizing the nuclear norm
‖WH‖∗, defined as the sum of the singular values of the matrix,
which is the tightest convex surrogate for the rank. Akin the `1-norm
that encourages sparsity of vectors, the nuclear norm promotes low
rank of matrices. In [23] it was shown that the sum of the Frobenius
norms of the non-negative matrices W and H gives an upper bound
on the nuclear norm of their product,

||WH||∗ ≤
1

2
‖W‖2F +

1

2
‖H‖2F . (3)

By adding these two terms as regularizers of (1) one can obtain a so-
lution which has a rank better adapted to the data and less dependent
on the exact selection of the number of atoms Q. As an example, we
show in Figure 1 a toy supervised speech separation experiment. For
each of the two speakers we learn dictionaries using training data and
then decompose the test signal in a combined dictionary. The per-
formance of the separation does not degrade with the increase of the
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Figure 1. Results for
speaker separation per-
formed in the supervised
setting described in Sec-
tion 3.1 and measured
in terms of the signal-to-
distortion ratio (SDR).
Low-rank (LR) NMF and
standard NMF varying the
number of atoms, Q.

rank bound Q. This is sharply different in the standard NMF prob-
lem, where the choice of the rank is a delicate issue greatly affecting
the performance of the method.

Even if the spectral components of speech can be well repre-
sented with low rank models, more robust estimations can be ob-
tained by constraining H to be sparse. Based on this, we propose to
model the time-frequency representations of the speech signals as a
sparse linear combination of the atoms of an under-complete dictio-
nary,

min
W≥0,H≥0

1

2
dβ(V|WH) +

λ∗
2
(‖W‖2F + ‖H‖2F) + λ ‖H‖1, (4)

where λ∗ and λ are parameters controlling, respectively, the low-
rank and the sparsity constraints. A multiplicative gradient descent
algorithm can still be used to solve (4).

4. SPEECH DENOISING

We assume that the speech signal is affected by additive non-
stationary noise. In line with the literature on NMF-based denoising
[4, 6, 11], we propose to model the speech and the noise by a pair of
pre-trained dictionaries Ws and Wn respectively. Given a degraded
signal V, we decompose it into speech and noise signals by finding
the activation matrices Hs and Hn minimizing

min
Hs≥0,Hn≥0

1
2
dβ(V|WnHn + WsHs) +

λ∗
2
‖Hs‖2F +

λ∗
2
‖Hn‖2F + λ ‖Hs‖1 . (5)

Note that the `2 regularization terms on the dictionaries are superflu-
ous, since they are assumed fixed. Observe that we impose sparsity
of the activation corresponding to the speech signal only, as noise
is poorly described by sparse activation. The model can be eas-
ily adapted to source separation: Hn would correspond to another
speaker and its sparsity would be enforced through an `1 term.

Problem (5) is column-wise separable and can be solved using a
simple adaptation of the multiplicative algorithms described in Sec-
tion 2. Once Hs and Hn are obtained, the time-frequency repre-
sentations of the speech and the noise are estimated as WsHs and
WnHn, respectively. Next, a time-frequency mask is constructed
and the speech is recovered from the mixture by Wiener filtering, as
is standard in NMF-based source separation.

The proposed model can also be used for speaker identification
in the presence of noise. When Wn matches the noise and Ws

is tuned to a particular speaker, the minimal cost attained in (5) is
likely to be small. On the other hand, using a dictionary W′

s tuned
to another speaker, the cost is likely to be higher as the dictionary
is less suitable for the given data. This suggests a very commonly
used classification scheme: a collection of dictionaries is trained,

137



input : Data v, dictionary W = (Ws,Wn).
output: Nonnegative coefficient vector h = (hs;hn).

Define B = I− 1
α

(
Ŵ

T

s Ŵs + λ∗I Ŵ
T

s Ŵn

Ŵ
T

n Ŵs WT
n Ŵn + λ∗I

)
,

A = 1
α

(
Ŵ

T

s

Ŵ
T

n

)
, t = λ

α

(
1
0

)
and Ŵ = QW.

Initialize h = 0, b = Av.
repeat

y = max{b− t, 0}
b = b + B(y − h)
h = y

until convergence;
Output (hs,hn) = h.

Algorithm 1: Proximal methods for solving the low-rank NMF
problem with β = 2, given the dictionaries Wn and Ws.

one per individual speaker. At testing, a collection of data vectors is
encoded in each of the dictionaries by solving (5). The class assign-
ment is made based on the minimum cost attained by the solutions,
sometimes with the help of pooling or voting in time.

4.1. Low-rank sparse NMF via convex optimization

When β = 2, the proposed low-rank NMF problem (4) with fixed
dictionaries can be solved using a first order convex optimization al-
gorithm. The solution is obtained via proximal methods [27], which
split the objective function (5) into a smooth part (the fitting and the
low-rank terms), and a non-differentiable part (the `1 norm of the
activation vector). The algorithm iterates between a gradient descent
step on the smooth function and an application of the proximal oper-
ator (which assumes a closed form of one-sided soft-thresholding),
as detailed in Algorithm 1. This algorithm is conceptually very simi-
lar to the iterative shrinkage and thresholding algorithm (ISTA) [28].
We do not use this algorithm as an explicit tool, but rather as a moti-
vation of the architecture of a learnable deterministic process.

5. LEARNABLE PURSUIT PROCESSES

In the model-centric setting described in Section 4, the time-
frequency representation of the enhanced signal is obtained by
solving the pursuit problem (5). Note that this optimization problem
implicitly defines a deterministic mapping that assigns to each input
vector v ∈ RF a pair of codes hs ∈ RQ and hn ∈ RQ.

We propose a process-centric approach for speech enhancement
in which we aim at explicitly construct a parametric regressors
(hs,hn) = hΘ(v), with some set of parameters, collectively de-
noted as Θ, capable of accurately separating the speech from the
background noise for a given training sample V = {v1, . . . ,vN}.
We denote by F the family of the parametric functions hΘ. Here,
each vi represents the magnitude spectrum of a mixture of speech
and noise; training samples may come from many different speak-
ers and noises, or be specific to a single speaker, or single noise
category, or both.

Following [20, 21, 23], we define F as the family of pur-
suit processes derived from a truncated proximal descent method,
in this case Algorithm 1. Each iteration can be described as a
function receiving the current state (bin,hin) and producing the
next state (bout,hout) by applying the non-linear transforma-
tion hout = max{bin − t, 0}, and the linear transformation
bout = bin + B(hout − hin). This can be described by the
function (bout,hout) = fB,t(bin,hin) parametrized by the matrix

B describing the linear transformation, and the vector t describing
the thresholding parameters. Then for a given number of layers T
we get a family of functions defined as,

FT =
{
hΘ(v) = fB,t ◦ · · · ◦ fB,t(Av,0) : Θ = {A,B, t}

}
.

The functions in FT can be thought as feed-forward multi-layer ar-
tificial neural networks with T identical layers. These encoder ar-
chitectures are continuous and almost everywhere C1 with respect
to the parameters, allowing the use of (sub)gradient descent meth-
ods for training. Learning these parameters produces much better
approximations than simply truncating the algorithms as mentioned
in Section 2 [20, 21]. We train the encoders by minimizing over V
functions of the form

L(Θ) =
1

|V|
∑
vi∈V

L(Θ,vi), (6)

where L(Θ,vi) is a function that measures the quality of the es-
timated speech spectrum hs = h(vi,Θ). We minimize (6) using
stochastic gradient descent. We initialize Θ with the parameters
given by Algorithm 1 and then iteratively select a random subset of
V and update the network parameters as Θ← Θ− µ ∂L(Θ)

∂Θ
, where

µ is a decaying step, repeating the process until convergence.
Once trained, the parameters Θ and the dictionaries W =

(Ws,Wn) are fixed, and the network is used to sequentially process
new data. The latency of the NMF networks (referred henceforth
as NMF encoders) is of the order of a single frame (hundreds of
milliseconds). In the next section we describe several choices of the
objective function for training the encoders.

5.1. Training regimes

Training of the proposed NMF encoders is possible under different
regimes. We refer as supervised to the setting where the training set
consists of the noisy speech signal vi, and the synchronized ground-
truth clean speech component s∗i (each vector corresponding to the
magnitude spectrogram). In that case, we set

Lsup(Θ,vi) = dβ(s
∗
i |WshΘs(vi)).

The reconstructed noise is discarded, as we are only interested in
reconstructing the speech signal. In the unsupervised setting we only
have access to noisy signals as the training data and the objective is
used to directly minimize the cost in (5),

Luns(Θ,vi) = dβ(vi|WhΘ(vi))+
λ∗
2
‖hΘ(vi)‖22+λ‖hΘs(vi)‖1

Finally, when the NMF encoders are used for speaker identification,
classification performance can be further improved by using a dis-
criminative loss. Let V+ be the set of noisy training examples cor-
responding to the speaker for which the model is being built, and let
V− include examples of other speakers. We would like the encoder
to minimize the loss Luns on V+ while simultaneously maximizing
it on V−. The aggregate loss function has the form

Ldis(Θ) = 1
|V+|

∑
v+
i ∈V

+ Luns(Θ,v+
i ) +

γ
|V−|

∑
v−
i ∈V

− max
{
0, µ− Luns(Θ,v−i )

}
,

where parameter γ governs the relative importance of the positive
and negative examples, and the hinge function with the margin pa-
rameter µ is used to counter excessive influence of the negatives.
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Exact NMF Exact NMF NMF Enc. NMF Enc. NMF Enc. NMF Enc.
Method (noise only) (noise+voice) (Untrained) (Sup. β = 2) (Sup. β = 0) (Unsup.)
street 4.67 | 2.57 6.90 | 6.77 6.07 | 6.37 7.21 | 7.21 8.08 | 7.70 6.22 | 6.50
restaurant 3.37 | 2.52 6.20 | 6.18 4.92 | 5.42 6.45 | 6.27 7.49 | 7.33 5.14 | 5.57
car 6.57 | 3.13 7.89 | 7.02 6.80 | 6.68 8.13 | 7.61 8.95 | 8.23 7.00 | 6.84
exhibition 7.38 | 3.14 8.85 | 7.95 7.78 | 7.79 9.15 | 8.60 10.07 | 9.46 7.95 | 7.88
train 6.53 | 3.24 8.48 | 7.21 7.55 | 6.95 8.71 | 7.78 9.22 | 8.01 7.70 | 7.06
airport 4.07 | 2.86 6.71 | 6.47 5.40 | 5.77 7.07 | 6.88 7.63 | 7.13 5.60 | 5.92
average 5.43 | 2.91 7.51 | 6.93 6.42 | 6.50 7.79 | 7.39 8.57 | 7.98 6.60 | 6.63

Table 1. Performance of
denoising methods on the
GRID dataset with differ-
ent background noises, in
terms of GSDR in dB. For
each method, two num-
bers are given correspond-
ing to the noise-specific
(first) and noise-agnostic
(second) settings.

The dictionaries are trained by executing the exact NMF algo-
rithm solving (4) independently on the clean speech and noise train-
ing examples, producing Ws and Wn, respectively. The perfor-
mance of the encoders can be further improved if the dictionaries are
updated during the training to match the parameters of the encoder.

In the speech denoising setting, often a semi supervised learning
is considered: [4] proposed an algorithm for speech denosing assum-
ing that a model of the speaker is available and adaptively learning
the one for the noise, while [6] propose a dual approach in which the
model of the noise is the one known. The proposed framework can
be used in a semi-supervised setting as well, by updating the noise
dictionary in an online manner as discussed in [23].

While the encoder architectures were constructed for an Eu-
clidean data term (β = 2), they still present sufficient flexibility
to be trained with a general divergence.

6. EXPERIMENTAL RESULTS

We evaluated the separation performance of the proposed methods
on a subset of the GRID dataset [29] containing ten distinct speak-
ers; each speaker comprising 1000 short clips. Three sets of 200 dis-
tinct clips each were used for training, validation, and testing. The
GRID clips were resampled to 8 KHz and artificially contaminated
by six categories of noise recorded from different real environments
(street, restaurant, car, exhibition, train, and airport) taken from the
AURORA corpus [30]. The voice and the noise clips were mixed
linearly with equal energy (0 dB SNR).

As the evaluation criteria, we used the source-to-distortion ratio
(SDR) from the BSS-EVAL metrics [31]. Following [32], we com-
puted the global SDR (GSDR) by averaging the SDR over all test
clips from the same speaker and noise weighted by the clip duration.

6.1. Comparison of denoising methods

We evaluated the proposed NMF encoders with the different training
settings discussed in Section 5.1. In all our examples we used T =
10 layers and q = 50. As a reference, we also evaluate untrained
networks with parameters initialized according to Algorithm 1. We
compare these result against exact low-rank NMF with noise model
only, and that involving both noise and voice models; both with the
Euclidean data term (β = 2). We used λ =

√
2Nσ and λ∗ =

√
2σ

with σ = 0.3 set following [33]; such a setting guarantees that if the
data V consist of n frames of zero-mean white noise of variance σ2,
then both WnHn and WsHs are zero.

In all experiments, the spectrogram of each mixture was com-
puted using a window of size 512 and a step size of 128 samples
(at 8 KHz sampling rate). Training was performed using 1500 safe-
guarded gradient descent iterations on a random selection of 10K
spectral frames for training and the same amount of distinct frames

Table 2. Performance of speaker identification methods with differ-
ent background noises in terms of classification rate.

Method Exact RNMF NMF Enc.
(Super.) (Discrim.)

street 0.86 | 0.93 0.91 | 0.63 0.91 | 0.94
restaurant 0.91 | 0.90 0.89 | 0.83 0.90 | 0.97
car 0.90 | 0.94 0.91 | 0.65 0.96 | 0.87
exhibition 0.93 | 0.94 0.91 | 0.65 0.95 | 0.96
train 0.93 | 0.94 0.88 | 0.77 0.96 | 0.95
airport 0.92 | 0.94 0.85 | 0.65 0.96 | 0.95
average 0.91 | 0.93 0.89 | 0.69 0.94 | 0.94

for cross-validation. All methods were trained in two distinct set-
tings: the noise-specific setting in which the noise category is as-
sumed to be known as the training is performed only on that noise;
and the noise-agnostic setting, in which the noise is only known to
belong to one of the six categories and the training is performed on
a random selection of all the noises.

Table 1 summarizes the performance of the compared methods.
We observe that the introduction of a low-rank sparse voice model
improves the quality of denoising by exact NMF algorithms by over
2 dB GSDR in the noise-specific setting, and over 4 dB GSDR in
the noise-agnostic one. The NMF encoder trained in the supervised
regime to produce the best approximation of the voice and noise
tracks known at training consistently outperforms the exact NMF al-
gorithms and NMF encoders trained in other regimes, achieving over
7 dB GSDR in both the noise-specific and noise-agnostic settings.
The use of the Itakura-Saito divergence (β = 0) in the supervised
setting brings further improvement by about 1 dB.

The complexity of the proposed NMF encoders is significantly
lower than the one of exact algorithms: a preliminary implementa-
tion is over four times faster than real time. The latency of our im-
plementation is in the order of hundreds of milliseconds, while the
exact algorithms require a significant amount of data to be observed.

6.2. Comparison of speaker identification methods

We evaluated the classification capabilities of different low rank
NMF architectures in combination with two supervised training
regimes discussed in Section 5.1, one aimed to produce a good
reconstruction of the speech signal and another one optimized to
produce the best classification. Table 2 summarizes the classifica-
tion rates of the compared methods with different noise and voice
models. In the noisy case (for which all training was performed), the
best performance is achieved when using the NMF encoders with
the discriminative loss. This simple example shows the potential of
using process-centric NMF for discriminative tasks.
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