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ABSTRACT

Distant-microphone automatic speech recognition (ASR) re-

mains a challenging goal in everyday environments involving

multiple background sources and reverberation. This paper is

intended to be a reference on the 2nd ‘CHiME’ Challenge, an

initiative designed to analyze and evaluate the performance

of ASR systems in a real-world domestic environment. Two

separate tracks have been proposed: a small-vocabulary task

with small speaker movements and a medium-vocabulary task

without speaker movements. We discuss the rationale for the

challenge and provide a detailed description of the datasets,

tasks and baseline performance results for each track.

Index Terms— Noise-robust ASR, ‘CHiME’ Challenge

1. INTRODUCTION

Despite tremendous progress in close-microphone ASR for

broadcast news, telephone speech or meeting speech, robust

distant-microphone ASR in everyday environments remains

a challenging goal. In parallel to research in the Speech and

Language (SL) community, new techniques have emerged in

the Audio and Acoustic Signal Processing (AASP) and Ma-

chine Learning for Signal Processing (MLSP) communities

which are currently changing the face of robust ASR [1–3].

The 1st ‘CHiME’ Challenge [4] held in 2011 was the first

concerted evaluation of ASR systems in a real-world domes-

tic environment involving both reverberation and highly dy-

namic background noise made up of multiple sound sources.

It differentiated itself from past noise-robust ASR challenges

[5–8] by considering more realistic noise conditions and from

concurrent source separation challenges [9] by assessing the

results in terms of ASR. Thirteen systems were submitted

[10–22] which cover a wide range of signal enhancement and

robust acoustic modeling techniques. The absolute keyword

accuracy achieved by the best system was only 3% below

that of a human listener. Further analysis showed that multi-

condition training and spatial enhancement are the most ef-

fective single strategies but that the resulting performance im-
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provements are not additive and that careful combination of

these and other strategies is needed for further improvement.

In order to maximize scientific insight, a number of sim-

plifications were brought to the task so as to keep it tractable

and ensure a diversity of submissions. A key decision was to

focus on the realism of the noise background while employing

an unrealistically simple target speech signal. Surveyed for

their opinion, the challenge entrants highlighted three main

additional dimensions of difficulty to be considered in future

challenges: variability of speaker location, vocabulary size

and speech naturalness. Indeed, ASR systems can be surpris-

ingly sensitive to speaker location and it is well known that

systems optimized for small vocabulary read speech often fail

to scale to larger vocabulary spontaneous speech.

This paper is intended as a reference on the ongoing 2nd

‘CHiME’ Challenge supported by the IEEE AASP, MLSP

and SL Technical Committees. We extend the difficulty of the

1st Challenge in the first two dimensions above, such that the

target speech conditions become closer to those in [6,7] but a

realistic multisource noise background is retained as opposed

to a single interfering speaker. In order to avoid too large an

increase in difficulty, two separate tracks have been proposed:

a small vocabulary task with small speaker movements and a

medium vocabulary task without speaker movements.

The structure of the rest of the paper is as follows. In

Section 2, we detail the creation of the datasets and define the

tasks to be addressed. In Section 3, we describe the baseline

recognizers provided together with the data and report their

performance when trained either from clean, reverberated or

noisy data. We conclude in Section 4.

2. DATASETS AND TASKS

The configuration considered by the 2nd ‘CHiME’ Challenge

is that of speech from a single target speaker being binaurally

recorded in a domestic environment. Three datasets are pro-

vided for each task: a training set, a development set and a test

set. Following [4,9], these data were generated by convolving

clean speech signals with binaural room impulse responses

(BRIRs) and mixing them with noise backgrounds.
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2.1. Noise and BRIR recordings

The BRIRs and the noise backgrounds were recorded in the

same domestic living room using two ear microphones built

into a B&K head and torso simulator (HATS) placed at a fixed

position [4]. About 14 h of noise backgrounds were collected

in chunks of 0.5 to 1.5 h over a period of several days. These

include the major sources of noise in a typical family home:

concurrent speakers, TV, game console, footsteps, and distant

noise from outside or from the kitchen. The BRIRs were mea-

sured via the usual sine sweep method for 121 different posi-

tions covering a horizontal square grid of 20 cm side centered

on the position 2 m directly in front of the HATS, with a grid

step of 2 cm. A fixed gain was applied to the estimated BRIRs

so that the level after convolution approximately matched that

of a human speaker at a natural conversational level.

2.2. Track 1: small vocabulary

As in the 1st Challenge, the small vocabulary task relies on

the Grid speech corpus [23]. The target utterances are 6-word

sequences read by 34 speakers of the form <command:4>

<color:4><prepos.:4><letter:25><digit:10><adverb:4>,

where the numbers in brackets indicate the number of choices

per word. The task is to recognize the letter and digit tokens.

Success is measured by the keyword recognition rate, that is

the percentage of correctly recognized tokens.

The temporal placement of the utterances within the noise

background was controlled in order to produce mixtures at 6

different ranges of signal-to-noise ratio (SNR): -6, -3, 0, 3,

6 and 9 dB1. This was achieved by randomly scanning the

background recordings and picking a time interval in the de-

sired SNR range for each utterance. In comparison to conven-

tional robust ASR evaluations [5] which operate by rescaling

the speech and noise signals, this mixing procedure is eco-

logically more valid, although it does not yet account for the

Lombard effect as in [6, 7]. The backgrounds at 9 dB are

dominated by quasi-stationary ambient sources, while those

at -6 dB typically involve nonstationary, sudden sound events.

In order to make the task more realistic, the clean utter-

ances were convolved with time-varying BRIRs mimicking

small head movements within the aforementioned horizontal

square grid. The parameterization of the movements was kept

simple in order to allow analysis of the results as a function

of the movement amplitude and speed: the target speaker was

assumed to be static at the beginning of each utterance, then to

move once, and finally to be static again. The movements fol-

low a straight left-right line at fixed front-back distance from

the HATS and each movement covers a distance of at most

5 cm at a speed of at most 15 cm/s. These movements were

implemented by interpolating the set of recorded BRIRs in the

1In order to better match the perceived SNR, the SNRs were computed

from high-pass filtered versions of the signals with a cutoff frequency of 80

Hz. Each SNR must be understood as a distribution of values with a standard

deviation on the order of ±1 dB.
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Fig. 1. Comparison of linear vs. phase interpolation for the

simulation of time-varying RIRs.

same way as the Roomsimove toolbox2: for each front-back

distance, a finer left-right grid of 2.5 mm step was designed

and, for each point of this grid, the corresponding BRIRs were

estimated by linear interpolation of the BRIRs recorded on the

coarser 2 cm grid; each time sample of the clean speech signal

was then convolved with the BRIRs associated with the point

of the finer grid that is closest to the source position at that

instant. This operation is an approximation of the true time-

varying BRIRs. In order to validate this approximation, we

conducted a simulation using non-binaural RIRs for simplic-

ity. We generated the RIRs at each point of the finer grid using

the source image method [24] assuming similar room geom-

etry and reverberation time and we computed the worst-case

modeling error achieved by linearly interpolating the filters

over the whole grid, as measured in terms of SNR after con-

volution with a speech signal. We compared the results to the

alternative interpolation procedure that consists of computing

the FFT of the RIRs, unrolling phase according to the time

delay of arrival, linearly interpolating phase and magnitude,

and computing the inverse FFT in a way similar to [25]. Al-

though phase interpolation yields perfect interpolation in the

case of pure delay filters, the results in Fig. 1 show that linear

interpolation performs better in the case of reverberant RIRs

and that it achieves a worst-case SNR of 19 dB for a coarse

grid step of 2 cm. Therefore, the modeling noise is at least

10 dB lower than the background noise, which is a reason-

able approximation given that it is hardly feasible in practice

to record RIRs on a finer grid.

We generated 600 noisy test utterances and 600 noisy de-

velopment utterances at each of the 6 SNRs, where the same

utterances are used for all SNRs and they do not overlap with

each other within each dataset. We also provided a training

set containing 500 utterances of each of the 34 Grid talkers in

clean, reverberated and noisy conditions. All data were sam-

pled at 16 kHz and are freely available under the terms of the

Creative Commons Attribution-NonCommercial-ShareAlike

3.0 license both as isolated utterances and as embedded utter-

ances including 5 s or more background before and after.

2http://www.irisa.fr/metiss/members/evincent/Roomsimove.zip
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2.3. Track 2: medium vocabulary

The medium vocabulary task relies on the Wall Street Jour-

nal (WSJ0) 5k vocabulary read speech corpus [26] also used

in [5–7]. The task is to recognize all words. Success is mea-

sured in terms of word error rate (WER), that is the number

of word substitutions, insertions and deletions as a fraction of

the number of target words.

The data were mixed in the same way as the 1st ‘CHiME’

Challenge, i.e., clean speech utterances were convolved with

the BRIRs corresponding to the fixed position directly in front

of the HATS. Different recording conditions were used for the

training, development and test datasets with the door being

open/closed and the curtains being drawn/undrawn. The tem-

poral placement of the utterances was controlled in a similar

way as above in order to produce mixtures at the same range

of SNRs. Since WSJ0 features longer utterances, the SNR

for a given utterance was defined as the median value of the

segmental SNR computed over segments of 200 ms. Also,

due to the increased amount of data, nonoverlapping tempo-

ral placement of the utterances in the development and test

sets was no longer feasible hence limited signal rescaling and

overlap were allowed when necessary.

The development set includes 409 noisy utterances from

10 speakers, forming the ”no verbal punctuation” (NVP) part

of the WSJ0 speaker-independent 5k vocabulary development

set. The test set comprises 330 noisy utterances from 12 other

speakers, forming the Nov92 ARPA WSJ evaluation set. The

training set includes 7138 reverberated utterances from 83

speakers forming the WSJ0 SI-84 training set. Both the de-

velopment and the test utterances are released at each of the

6 SNRs while a noisy training set is provided by mixing each

utterance at one random SNR, uniformly distributed in the

defined range. All the noisy utterances are provided both in

isolated and in embedded form. All data were sampled at

16 kHz and are available under agreement with the Linguistic

Data Consortium (LDC).

2.4. Instructions

A set of instructions was provided in order to keep the task

as close to an application scenario as possible, avoid unvolun-

tary overfitting and allow systems to be broadly comparable.

The systems are allowed to exploit knowledge of the temporal

placement of the utterances, of the surrounding background,

of the speaker identity (for task 1) or of the speaker move-

ments (also for task 1). However, they cannot exploit the SNR

labels in the test set, the fact that the same utterances are used

at each SNR, the fact that the same noise backgrounds are

used in the development and test sets, the fact that the same

utterances are used within the clean, reverberated and noisy

training sets3, the fact that the BRIRs are identical between

3Note that this forbids so-called “stereo data” approaches, which assume

the availability of synchronised clean and noisy data.

different test utterances (for task 2) or the fact that the noise

signals in the test utterances may temporally overlap (also for

task 2). All parameters should be tuned on the provided train-

ing and development sets using the provided language models

and the system should be run only once on the test set. Be-

sides these rules, entrants are left entirely free in the develop-

ment of their system, so as not to artificially disadvantage one

research community over another.

3. BASELINES

For each of the two tracks, a baseline ASR system based on

HTK [27] was made available so as to lower the entry bar for

researchers outside the SL community and demonstrate the

performance achievable with neither signal enhancement nor

advanced robust acoustic modeling techniques. This system

includes both training and decoding scripts. Trained acoustic

models were provided for clean, reverberated and noisy data.

An alternative baseline ASR system based on Kaldi was made

available for Track 2 and is separately described in [28].

3.1. Acoustic features

The speech waveforms are parameterized into a sequence

of standard 39-dimensional Mel-frequency cepstral coef-

ficient (MFCC) vectors: 12 Mel-cepstral coefficients pro-

cessed by cepstral mean normalization (CMN), plus loga-

rithmic frame energy and delta and acceleration coefficients

(MFCC E D A Z). The MFCCs are extracted from 25 ms

time frames with a step size of 10 ms. Prior to feature extrac-

tion, the input binaural signals are downmixed to mono by

averaging the two channels together. Note that, although this

downmixing operation leads to a small degradation of WER

(1.5% on average) for Track 2 compared to the front end

in [29], we decided to use it in order to allow comparison of

the results across tracks and with the 1st ‘CHiME’ Challenge.

3.2. Small vocabulary recognizer

The baseline system for Track 1 is identical to that of the 1st

‘CHiME’ Challenge. Each of the 51 words in the Grid vo-

cabulary is modeled with a left-to-right HMM with 2 states

per phoneme. The emission probability for each state is rep-

resented as a Gaussian mixture model (GMM) with 7 compo-

nents with diagonal covariance. The language model is fixed

according to the Grid syntax.

Training proceeds in two stages: a speaker-independent

model is first trained from a flat start using the full 17,000-

utterance training set with HCompV, HERest and HHEd; a

speaker-dependent model is then derived for each of the 34

speakers by applying further Baum-Welch iterations on the

500 utterances belonging to that speaker using HERest. Exact

Viterbi decoding is performed using HVite.
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Training -6 dB -3 dB 0 dB 3 dB 6 dB 9 dB

Clean 10.58 11.17 13.33 17.75 21.17 24.42

Reverb 32.17 38.33 52.08 62.67 76.08 83.83

Noisy 49.33 58.67 67.50 75.08 78.83 82.92

Table 1. Baseline test set keyword accuracy (%) for Track 1.

Training -6 dB -3 dB 0 dB 3 dB 6 dB 9 dB

Clean 93.56 93.05 91.67 89.05 84.79 79.21

Reverb 87.97 83.19 78.05 71.87 65.23 55.91

Noisy 70.43 63.09 58.42 51.06 45.32 41.73

Table 2. Baseline test set WER (%) for Track 2.

3.3. Medium vocabulary recognizer

The baseline system for Track 2 follows the recipe in [29].

The number of phonemes is 41: 39 phones plus 1 silence (sil)

and 1 short pause (sp) model. The output distributions of sp

and sil have their parameters tied. The number of clustered

triphone HMM states is 1860 and is relatively smaller than the

conventional setup (more than 2000 states). Each HMM has

three output states with a left-to-right topology with self-loops

and no skip. Each HMM state is represented by a GMM with

8 components for phoneme-based HMMs and 16 for silence-

based HMMs. The standard WSJ 5K non-verbalized closed

bigram language model is considered.

The provided training scripts only re-estimate the HMM-

GMM parameters from a clean speech acoustic model, and

do not change the model topology for simplicity. Decoding is

performed using HVite with a pruning threshold.

3.4. Parameter tuning

We did not fine tune the features (0th MFCC vs. log-energy,

other features than MFCCs), the acoustic model topology (tri-

phone HMM clustering and number of GMM components)

and the search parameters (language model weight, insertion

penalty), as the optimal tuning is highly dependent on the

enhancement technique used. Other LVCSR decoders could

also be considered. Readers interested in providing sugges-

tions or advice in this regard are welcome to contact us.

3.5. Baseline results

Tables 1 and 2 report the performance of the baseline systems

trained on clean, reverberated or noisy data as a function of

the SNR. The best results are achieved by training on noisy

data for all SNRs except the 9 dB SNR condition in Track 1.

These figures must be compared to a keyword accuracy

of 97.25% and 95.58% and to a WER of 7.49% and 18.40%

when decoding the clean or reverberated utterances underly-

ing the test set using clean or reverberated acoustic models re-

spectively. While reverberation alone increases the error rate

by a factor of 1.6 to 2.5, background noise further increases it

Training -6 dB -3 dB 0 dB 3 dB 6 dB 9 dB

Clean 13.25 12.33 17.08 20.75 27.50 34.08

Reverb 30.33 35.33 49.42 62.75 75.00 82.50

Table 3. Baseline test set keyword accuracy (%) for the 1st

‘CHiME’ Challenge.

by a factor of 2.3 to 11 depending on the SNR and it is there-

fore the main issue to be solved by the challenge entrants.

Comparison with the baseline results of the 1st ‘CHiME’

Challenge in Table 3 shows the impact of speaker movements

and vocabulary size. Speaker movements decrease the key-

word accuracy by 4% on average with clean training, but they

increase it by 2% with reverberated training due to the aver-

aging effect they induce on the spectral differences between

training and test. Larger vocabulary size increases the error

rate by a factor of 1.3 to 3.2 with reverberated training de-

pending on the SNR. Of course, the impact of speaker move-

ments and vocabulary size may be different on more advanced

systems and this is what the Challenge will seek to determine.

4. CONCLUSION

The series of ‘CHiME’ Challenges pursues the endeavor of

evaluating robust ASR systems in real-world environments

involving multisource background noise. The 2nd edition has

increased the difficulty along two axes: small speaker move-

ments and vocabulary size. Precise instructions have been

provided to allow comparison of systems and maximize sci-

entific insight. The submitted systems and the results will be

unveiled at the 2nd ‘CHiME’ Workshop.
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