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ABSTRACT

In this paper we propose an approach to retrieve the absolute

geometry of an acoustic sensor network, consisting of spa-

tially distributed microphone arrays, from reverberant speech

input. The calibration relies on direction of arrival measure-

ments of the individual arrays. The proposed calibration al-

gorithm is derived from a maximum-likelihood approach em-

ploying circular statistics. Since a sensor node consists of a

microphone array with known intra-array geometry, we are

able to obtain an absolute geometry estimate, including an-

gles and distances. Simulation results demonstrate the effec-

tiveness of the approach.

Index Terms— Geometry calibration, microphone arrays,

position self-calibration

1. INTRODUCTION

The usage of distributed microphone arrays instead of a sin-

gle one, boosts the performance of many speech enhance-

ment and source localization tasks, in particular in large en-

closures. With ever more mobile devices, such as laptops or

smartphones, being equipped with multiple microphones, ad-

hoc configurations can be formed with sensors being at un-

known and possibly time-variant positions. However, knowl-

edge of the geometric arrangement is desirable to exploit the

full potential of distributed multi-channel signal processing

algorithms, or to realize speaker localization and tracking ap-

plications.

Several solutions have been proposed for automatic mi-

crophone position self-calibration, which, however, come

along with certain restrictions. A high positioning accuracy

is reached by time of flight (TOF) based algorithms [1], how-

ever a tight clock synchronization between transmitter and

receiver is essential, thus ruling out the use of a speaker’s

voice as a calibration signal. TOF measurements often re-

quire special calibration hardware [2].

Time difference of arrival (TDOA) based algorithms re-

quire a clock synchronization among all sensors, and artificial

calibration signals, such as chirps or wide-band noise signals,
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have been employed to accomplish precise results [3]. The ge-

ometry self-calibration problem can be simplified by assum-

ing the acoustic sources to be in the far field with respect to

the microphones. This allows to exploit a rank constraint in

the matrix containing the TDOA values [4]. Excellent posi-

tion accuracies were achieved in an anechoic setting. How-

ever, to our experience the performance quickly degrades in

the presence of reverberation.

If a sensor node consists of a microphone array, direction

of arrival (DOA) based approaches can be used for geome-

try calibration [5]. They avoid the need for an exact clock

synchronization among the distributed sensor nodes, but are

considered to be able to recover only relative geometries, lack-

ing any absolute distance information [6, 7]. If, however, the

intra-array geometry is known, even absolute geometries can

be estimated as is shown here.

The objective functions employed for geometry calibra-

tion have been mostly derived from geometric considerations.

Here, we start from a statistical point of view. Modeling the

observed DOAs as draws from a VON MISES probability den-

sity function (PDF) we arrive at the same objective function,

which has previously been proposed on pure heuristic grounds

[8]. A formulation is then developed, which allows for an ab-

solute geometry calibration from unconstrained speech input

in a reverberant environment, where a speaker is allowed to

continuously move in the room without any halts at specific

positions.

This paper is organized as follows. In sec. 2 we derive

a calibration algorithm from the maximum-likelihood (ML)

approach. Then we illustrate in sec. 3 how to exploit the

intra-array configuration of a circular array to obtain abso-

lute geometry information. After describing the simulation

framework in sec. 4 we present both relative and absolute cal-

ibration results in a reverberant enclosure in sec. 5. The paper

concludes with section 6.

2. ML FORMULATION OF GEOMETRY

CALIBRATION PROBLEM

Our goal is to determine the geometry of an acoustic sensor

network comprising I nodes delivering DOA measurements.
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A sensor node consists of microphone array, where the loca-

tion is described in 2D by a position vector pi = [xi, yi] and
an orientation θi, i = 1, . . . , I .

Now consider a moving speaker located at the unknown

positions et = [at, bt], t = 1, . . . , T . In the local coordi-

nate system of the i-th node the angle, at which the source is

located, is given by, see Fig. 1,

µi,t := αi,t − θi, (1)

while a DOA estimation algorithm may yield a measurement

ϕi,t, possibly different from µi,t, due to reverberation, noise

or other imperfections.
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Fig. 1. Geometric relation between 2-element microphone

array (green) and speaker location (red).

We assume that the DOA ϕi,t follows a VON MISES prob-

ability density function (PDF):

p(ϕi,t;µi,t, κi,t) =
exp (κi,t cos(ϕi,t − µi,t))

2πI0(κi,t)
, (2)

where I0 is the zeroth-order modified Bessel function of the

first kind. The VON MISES PDF is the most commonly used

density in circular statistics, which defines PDFs on the unit

sphere [9]. The parameters µ and κ are analogues to the mean

and inverse of the variance (precision) of the normal PDF and

are termed mean orientation and concentration parameter.

Now assume that we have independent DOA observations

ϕi,t, i = 1, . . . I , t = 1, . . . , T from I sensor nodes and T
speaker positions. Additionally we assume that the sum of

terms corresponding to the denominator of eq. (2) is approx-

imately constant, so the log-likelihood function for the mean

orientations is then given by

ℓ(µ) =

T
∑

t=1

I
∑

i=1

κi,t cos(ϕi,t − µi,t), (3)

where µ = {µi,t; i = 1, . . . I, t = 1, . . . , T }. Even if we

assume the concentration parameters to be constants which

are not estimated, this formulation, however, bears the obvi-

ous problem that there are as many unknowns µi,t as there

are observations, which precludes a sensible estimation. The

problem could be eased if multiple measurements were taken

at a speaker position et. This, however, would mean that the

speaker has to stop moving at a position et, speak and con-

tinue moving only after a sufficient number of DOAs has been

taken.

Looking closer at the geometric configuration of Fig. 1, we

see that the mean orientation µi,t can be written as a function

of Cartesian coordinates:

µi,t = µ(pi, θi, et) = atan

(

bt − yi
at − xi

)

− θi. (4)

If we assume without loss of generality that the first sensor

node is located at p1 = [0, 0] at an orientation θ1 = 0, there
are a total of 3(I−1) unknown sensor location parameters and

2T source position parameters to be estimated. The number

of observations I ·T should therefore be at least 3(I−1)+2T ,
resulting in T ≥ 3(I−1)/(I−2), to havemoremeasurements

than unknowns. Note that a single DOA per speaker position

is sufficient, as long as this inequality holds.

In this work we considered the concentration parameters

to be constants, which are not estimated. A viable heuristic is

to assume that they are proportional to the distance between

the source and the sensor, i.e., κi,t ∝ di,t = |et − pi|. The
maximum-likelihood estimates of the sensor positions, sensor

orientations and speaker positions are then given by

〈p∗

2:I , θ
∗

2:I , e
∗

1:T 〉 =

argmax
p2:I ,θ2:I ,e1:T

{

T
∑

t=1

I
∑

i=1

di,t cos (ϕi,t − µ(pi, θi, et))

}

, (5)

where (· )2:I and (· )1:T denotes all sensor and all speaker po-

sition variables respectively.

Indeed, this is the objective function earlier introduced in

[8]. While a purely heuristic motivation was given there, we

have shown here, that it can be derived from the maximum-

likelihood principle assuming a VON MISES PDF for the ob-

servation probability.

Eq. (5) constitutes a nonlinear optimization problem. In

[8] we proposed to solve it by an iterative Newton algorithm.

To do so, the optimization problem was rewritten to

〈p∗

2:I , θ
∗

2:I , e
∗

1:T 〉 = argmin
p2:I ,θ2:I ,e1:T

{

T
∑

t=1

I
∑

i=1

di,t [1− cos (ϕi,t − µ(pi, θi, et))]

}

, (6)

and the minimum was found by an iterative Newton root find-

ing algorithm.

Note that the formulation of the objective function con-

tains position coordinates, although the measurements com-

prise only angles. Cartesian coordinates for sensor and source

position have been chosen to arrive at a formulation, where

there are more measurements than unknowns. It should, how-

ever, not be misinterpreted in the sense that absolute positions

can be retrieved. In fact, the position estimates exhibit an arbi-

trary scaling. To fix the scaling, at least one distance value has

to be employed. In the next section we show that sensor nodes

consisting of circular microphone arrays and knowledge of

the radii of the circular arrays is sufficient to transform the rel-

ative geometry to an absolute geometry, including the proper

scaling.
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3. ABSOLUTE GEOMETRY CALIBRATION WITH

CIRCULAR ARRAYS

In the following we assume that a sensor node consists of a

circular microphone array comprising K microphones, with

known intra-array arrangement. The spatial location of the

j-th sensor node is given by the position of the array’s center

gj = [xj ; yj ] and it’s orientation γj (see Fig. 2), j = 1, . . . , J .
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Fig. 2. Structure of a circular microphone array with cen-

ter gj , orientation γj and K = 4 microphones equidistantly

spaced on a circle of radius r around the center.

The location sc of the c-th microphone, c = 1, . . . ,K ,

relative to the center of the circular array, is given by

sc = r [cos (γj + 2πc/K) , sin (γj + 2πc/K)]T , (7)

where r denotes the radius of the array. Each of the
(

K
2

)

mi-

crophone pairs within a circular array forms a 2-element array,

which can deliver a DOA estimate. Let i enumerate all micro-

phone pairs that can be formed within a circular array, i.e.

i := i(c, d), where c = 1, . . . ,K and d = c + 1, . . . ,K are

the microphone indices. The geometry of the i-th 2-element

array is characterized by the orientation θi and its center pi,

see Fig. 2. The center is given by

pi = gj +∆i with ∆i := ∆i(c,d) =
sc + sd

2
. (8)

Using angular relationships derived from Fig. 2 the orienta-

tion θi of a microphone pair formed by microphone #1 and

#d can be expressed as

θi = γj + β with β = arccos

(

∆
T
i(1,d)s1

‖∆i(1,d)‖‖s1‖

)

. (9)

Similar formulations can be found for the other pairs.

The intra-array relations of eq. (8) and eq. (9) form addi-

tional constraints for the optimization problem. These con-

straints particularly provide the necessary distance informa-

tion to obtain an absolute calibration, since they incorporate

the known radius r to express pi and θi as functions of the
parameters of the circular array. This distance information

allows to perform an absolute geometry calibration, without

measuring any additional distance, such as the distance be-

tween two sensor nodes, as it is proposed in [10].

The absolute geometry of the circular sensor network is

revealed by plugging eq. (8) and eq. (9) into eq. (6) and opti-

mizing it with respect to the positions and orientations of the

circular arrays:

〈g∗

2:J , γ
∗

2:J , e
∗

1:T 〉 = argmin
g2:J ,γ2:J ,e1:T

(10)







T
∑

t=1

J
∑

j=1

I
∑

i=1

di,t [1− cos (ϕi,t − µ(gj , γj ,∆i, et))]







.

Due to reverberations in real environments we cannot as-

sume the DOA estimates to be accurate. Using the DOA esti-

mates obtained from an adaptive beamformer operating on the

reverberant microphone signals, see section 5, we observed a

bias in the recovered geometry: the estimated distances were

consistently smaller than the true ones.

This effect can be explained by looking at eq. (10). In

case of accurate DOA estimates and a perfectly recovered ge-

ometry the cosine expression equals one. Due to measure-

ment errors the cosine term may differ from one. The term is

weighted by the distance between the i-th sensor and the t-th
speaker position, di,t. Thus the larger the distance the larger
the contribution to the cost function. Consequently, smaller

distances are preferred as they lead to smaller contributions

to the overall cost.

An obvious remedy to this problem would be to set di,t =
1 and thus obtain a ”normalized” cost function. This, however,

negatively impacted the numerical stability and convergence

properties. If the initial values of the geometry parameters

are far off the true ones, divergence of the optimization was

frequently encountered. We therefore adopted a two-stage

strategy, were we first performed a calibration with the cost

function of eq. (10) which includes the distance term. The ge-

ometry obtained from this first stage was taken as the initial

values for a second optimization with the ”normalized” cost

function, where di,t is set to unity. This approach avoided

the convergence problems of the normalized cost function and

yet delivered geometry estimates that did not favour small dis-

tances.

4. SIMULATION FRAMEWORK

In order to evaluate the performance of our proposed calibra-

tion algorithm in reverberant environments we compiled an

audio-database with reverberation times from 0ms to 500ms,
by employing the image method [11]. The setup consists of

15 microphones, within a room of size 8m × 5m, arranged

in 3 circular arrays with 5 cm radius each. We used 5 arrange-
ments of the circular arrays with a distance of approximately

1m between the individual arrays. An example arrangement

is depicted in Fig. 3. The same 6min long trajectory, which

corresponds to T ≈ 45000, is used for each reverberation

time and microphone configuration.

The DOA estimates, which are input to the geometry cali-

118



bration algorithm, are obtained from the audio signal by an

3
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Trajectory

Fig. 3. Example ar-

rangement of 3 circu-

lar microphone arrays

(green dots).

adaptive beamformer [12, 13].

The beamformer coefficients are

given by the eigenvector with the

largest eigenvalue of the power

spectral density matrix of the mi-

crophone signals and are deter-

mined by an adaptive eigenvalue

decomposition. From the coeffi-

cients the DOA can be computed

as a side product. The algorithm

delivers DOA estimates on blocks

of 128 samples (at 16 kHz sam-

pling rate), i.e., every 8ms, which
is much faster than frame sizes

typically required for GCC-PHAT

[14]. Thus, the speaker can contin-

uously move and is not required to

halt for talking.

As mentioned before, imperfections of the input DOA es-

timates highly influence the precision of the geometry calibra-

tion. To reduce their impact on the calibration result, the cal-

ibration algorithm is embedded in a ”random sample consen-

sus” (RANSAC) framework [15] for outlier rejection. Since

the way we employ the RANSAC has been reported earlier

[7], we give only a short summary here.

Since we continuously obtain new DOA estimates, due to

the movement of the speaker, we usually collect many more

observations than are necessary for a single calibration pro-

cedure, actually even more than we can handle in a single

calibration procedure. To cope with large amounts of obser-

vations we split the DOA estimates into subsets, perform a

RANSAC embedded calculation on each subset and finally

fuse the results into a single geometry estimate.

database

Observation−

selection

Sub−database

calibration
embedded
RANSAC Result

fusion
Geometry

Fig. 4. Block diagram of simulation framework.

5. SIMULATION RESULTS

The accuracy of the calibration algorithm is quantified by the

“mean position error” (MPE), which is the average distance

between the real and the estimated positions of the sensor

nodes. To compute the MPE we perform a rigid body transfor-

mation [16] to match the calibration result and the reference

geometry, since the calibration result has an arbitrary global

orientation.

To distinguish between geometric errors and scaling errors,

we evaluate the MPE for a relative and an absolute calibration.

The relative MPE (rel) is obtained after applying a rigid body

transformation,which is allowed to scale the calibration result

such that the difference between estimated and scaled position

and the true sensor position is minimized. The absolute MPE

(abs) is computed without an additional scaling, i.e., employ-

ing the scaling estimated by the proposed objective function,

hence it identifies scaling errors as well. Fig. 5 shows the rel-

ative and absolute calibration error for different reverberation

times averaged over all sensor configurations.
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Fig. 5. Comparison of the relative (rel) and absolute (abs)

MPE averaged over 5 different sensor arrangements.

For low reverberation times up to T60 = 150ms the rel-

ative positioning error is smaller than 5 cm and the absolute

positioning error is about as twice as large. With increasing re-

verberation time the gap between both curves increases, since

it is more difficult to obtain the right scaling. The MPE does

not increase monotonically with increasing reverberation

time, probably because certain imperfections of the geometry

estimates can be easier compensated for by the rigid body

transformation than others, especially if an additional scaling

is used. According to our implementation of the TDOA based

approach [4], we can state that it outperforms our proposed

framework in a non reverberant scenario.However, the ap-

proach completely failed in the presence of even moderate

reverberation (T60 > 100ms), while our framework delivers

reasonable results, even for large reverberation times.

6. CONCLUSIONS AND RELATION TO PRIOR

WORK

We have derived a calibration algorithm from the maximum-

likelihood principle using circular statistics to obtain the

geometric configuration of distributed sensor nodes. Incorpo-

rating the intra-array geometry of circular sensor nodes, we

are able to obtain the absolute geometry of the sensor net-

work without measuring any distance between sensor nodes.

Additionally we have embedded the proposed calibration

algorithm into a RANSAC framework and evaluated its per-

formance in a reverberant environment. Overall we achieved

a relative MPE smaller than 12 cm and an absolute MPE

smaller than 35 cm for reverberation time up to 500ms in a

simulated room of size 40m2.

While we have motivated the objective function earlier

from geometric considerations [8], it is shown here that it can

be derived as the ML solution using the VON MISES PDF.

We also show here that it is sufficient to know an intra-array

distance of an array where the microphones must not be ar-

ranged collinearly to estimate absolute geometries from DOA

estimates, while in earlier work an inter-array distance had to

be provided to fix the scaling.
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