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ABSTRACT

We propose a new approach for clustering competing speech sources
using distributed microphone arrays. In this approach, we first define
two feature vectors where the first captures the intra-node location
information while the second captures the level difference of speech
energy recorded at different nodes. Then, we introduce Watson and
Dirichlet mixture models to model the first and second features, re-
spectively. We integrate both types of information in an expectation
maximization algorithm to cluster the simultaneous speech sources.
The performance of the proposed approach is superior to best node
selection and comparable to centralized processing in terms of con-
ventional blind source separation metrics.

Index Terms— Distributed microphone array, source cluster-
ing, blind source separation, expectation maximization.

1. INTRODUCTION

Distributed microphone array (DMA) processing is emerging as an
alternative to the conventional treatment of microphone arrays with
co-located elements, and has the potential to solve challenging tasks
thanks to the extended spatial coverage and scalability of DMAs. A
good illustration of this fact is represented by meeting applications
where participants have personal communication devices (PCDs).
A DMA is formed when these PCDs, considered to be nodes of the
DMA, record audio signals, and collaborate to process them. A sum-
mary of other potential applications can be found in [1].

Central to the design of DMA-based algorithms are proper defi-
nitions of the roles of nodes, the information to be processed locally,
and the data shared in the network to achieve a global processing
goal. In the particular context of blind source separation (BSS) of
speech using DMAs, earlier contributions include a distributed inde-
pendent component analysis (ICA)-based algorithm proposed in [2].
Therein it is shown that successful BSS can be achieved when dif-
ferent nodes apply different ICA adaptations and exchange speech
sparseness-based [3, 4] regularization factors. In [5], an approach
where every node detects its local neighboring sources and separates
them using ICA is proposed. To apply ICA in both methods, every
node must have at least as many microphones as detected sources.
This constraint may not be practical due to hardware constraints, for
instance. In contrast, clustering-based BSS does not require such
a strong assumption [4, 6]. In [7], we proposed a DMA-based ap-
proach for speech clustering using the local normalized recordings
of the nodes. The problem was cast into a distributed expectation
maximization (EM) procedure. Since different nodes collect differ-
ent spatial characteristics of the sources, it was concluded that it is
more natural to fuse the estimated posterior probabilities than the
model parameters, as in other distributed clustering techniques [8,9].

In this paper, we extend our approach for speech source cluster-
ing and separation in DMAs that we first proposed in [7]. Indeed, us-

ing the local normalized recordings as feature vectors for clustering
does not allow the algorithm to capture the internode interactions.
Particular nodes may be located near some sources, and this infor-
mation can be valuable for clustering. For example, in the scenarios
with multiple PCDs mentioned above, it is natural to assume that
every device is located nearer to its user than to other participants.
Our focus in this paper is then to exploit this information jointly with
normalized local recordings. Specifically, we introduce a new fea-
ture vector, which captures the relative internode speech attenuation.
To model this information, we propose to use the Dirichlet mixture
model (DMM) [10, 11] that we combine with the Watson mixture
model (WMM) [6, 12–14] for the local normalized recordings in an
EM algorithm to obtain improved clustering performance.

2. DATA MODEL

We are interested in scenarios where L > 1 competing speech sig-
nals are recorded by a DMA of N nodes. At time frame t and fre-
quency k = 1, ...,K, where K is the number of frequency bins, the
nth node recordings are expressed in the short time Fourier trans-
form domain as

yn(k, t) ≈
L∑

l=1

xn,l(k, t) + vn(k, t). (1)

yn(k, t) = [Yn,1(k, t) · · · Yn,Mn(k, t)]
T contains the Mn multi-

channel recordings, xn,l(k, t) = hn,l(k)Sl(k, t) contains the rever-
berant microphone observations of the lth speech signal, Sl(k, t),
and Mn denotes the number of microphones at the nth node.
hn,l(k) = [Hn,1l(k) · · · Hn,Mnl(k)]

T contains the channel trans-
fer functions between the lth source and the microphone elements of
the nth node, and vn(k, t) = [Vn,1(k, t) · · · Vn,Mn(k, t)]

T repre-
sents the additive acoustic noise. We further define the global ob-
servation vector y(k, t) =

[
yT
1 (k, t) · · ·yT

N (k, t)
]T

. We do not
mention the explicit dependence on frequency, k, in our notations
next since all our processing is performed frequency-bin-wise.

3. CONVENTIONAL CENTRALIZED PROCESSING

This section revisits the conventional centralized clustering ap-
proach, which uses the following feature vector [6]

ψ(t) , y(t)

∥y(t)∥ . (2)

The normalization of the recording vector reduces the effect of
speech energy fluctuations and maps the recordings on the complex
unit hypersphere. It turns out that this feature vector can be accu-
rately modeled using a multimodal distribution thanks to the prop-
erty of sparseness of speech [3, 4]. Each of the modes of such a dis-
tribution is concentrated around the normalized propagation vector
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(centroid) of one of the L competing sources [6, 14]. Subsequently,
separating the speech sources amounts to defining a latent variable,
H, that identifies the most likely mode at a given time-frequency
slot. Since we have L sparse signals, H can take L discrete values
denoted as H1, ...,HL. When H = Hl, l = 1, ..., L, the lth speaker
dominates the mixture. In other words, the clustering and separation
of recorded sounds becomes possible by determining the L posterior
probabilities p (Hl|ψ(t)), l = 1, ..., L.

In conventional location-based clustering [6, 14], ψ(t) is mod-
eled as

p (ψ(t);θ) =

L∑
l=1

wlp (ψ(t)|Hl). (3)

θ contains all model parameters,
∑

l wl = 1, 0 ≤ wl ≤ 1, and
wl = P (Hl). In [6], a Gaussian-like distribution was used for
p (ψ(t)|Hl) following the idea of line orientation [15, 16]. This is
rather an approximation of the Watson distribution since ∥ψ(t)∥ =
1, and we have [13, 14, 17]

p (ψ(t)|Hl;al, κl) =
Γ(M)

2πMM (1,M, κl)
exp

(
κl

∣∣∣aH
l ψ(t)

∣∣∣2)
(4)

that we equivalently denote as ψ(t)|Hl ∼ WM (al, κl). κl

and al represent the concentration parameter and centroid of the
distribution [17], M =

∑N
n=1 Mn, Γ (·) is the Gamma func-

tion, and M (·, ·, ·) is Kummer’s confluent hypergeometric func-
tion [18]. The EM algorithm can then be used to determine θ ,[
w1 · · · wL aT

1 · · · aT
L κ1 · · · κL

]T
, and the posterior probabili-

ties of the L clusters are obtained as a byproduct. Detailed expres-
sions of the model parameters can be found in [12–14].

It should be noted that in the definition of ψ(t), all signal obser-
vations are jointly processed by a central unit. In a DMA, however,
nodes constituting the network can have a certain autonomy and pro-
cess their local recordings. Furthermore, they can have some trans-
mit/receive capability to communicate and collaborate with each
other following some protocol. It is then important to appropriately
define the feature vectors that can be used by these nodes, their as-
sociated statistical models, and the data exchanged in the network
to achieve collaboration. For simplicity, we assume that all nodes
communicate with each other, although it is possible to use the same
principle with some other topologies, e.g., [1].

4. DISTRIBUTED LOCATION-BASED SPEECH
CLUSTERING

This section discusses two types of feature vectors that we design
to capture the intra- and inter-node location information. We define
these feature vectors and provide their statistical models. We then
integrate them into an EM algorithm to find speech clusters.

4.1. Intra-Node Feature Vector

We assume that each of the nodes has at least two microphones,
thereby allowing it to capture the location information about the par-
ticipating speakers by using the local normalized recordings vec-
tor. In other words, the nth node computes its local location
feature ψn(t) , yn(t)

∥yn(t)∥ , which is distributed on the complex
unit hypersphere similar to ψ(t), and it is reasonable to assume
that it has a multimodal distribution due to the various contribu-
tions of the speech sources, with ψn(t)|Hl ∼ WMn(an,l, κn,l).
Hence, the set of unknown parameters of our model is θ̃ ,[
w1 · · · wL aT

1,1 · · · aT
N,L κ1,1 · · · κN,L

]T
. Every node can clus-

ter its local recordings regardless of other nodes. Nevertheless, it is

beneficial to consider exchanging some information between nodes
to reach a global consensus on the activities of the speech sources
(equivalently, the posterior probabilities of the L clusters) from the
recordings. The exchanged information can be raw recordings, or
some processing results, e.g., a node decision on the local observed
data, which we consider here. In our case, we are interested in shar-
ing the posterior probabilities between the nodes since they can be
transmitted at a lower rate than raw data [7]. To achieve distributed
processing, we assume the following

p
(
ψ̃(t)|Hl

)
=

N∏
n=1

p (ψn(t)|Hl), (5)

where ψ̃(t) ,
[
ψ1

T (t) · · · ψN
T (t)

]T
. The above conditional in-

dependence assumption has been commonly used to obtain a “work-
able approximation of the reality which may be more complex” [19]
in distributed sensor networks. For instance, a similar assumption
was made in the context of unsupervised learning of Gaussian mix-
ture models [8, 9]. It is worthwhile noting that besides the fact that
we are interested in speech clustering and separation using the loca-
tion information in DMAs, which has not yet been investigated, the
proposed model has independent parameters per node (centroids and
concentration parameters), and only a posteriori and a priori prob-
abilities of speech presence, which describe the speakers’ activities,
are common to all nodes. Conversely, in most existing literature on
the use of distributed EM to estimate mixture model parameters, the
latter are common to all nodes [8, 9].

By virtue of assumption (5) and Bayes’ rule, we can express the
lth global posterior probability as [7, 19]

℘̃
(
t, l, θ̃

)
, p

(
Hl|ψ̃(t); θ̃

)
= ζ

(
t, l, θ̃

)
· χ
(
t, θ̃
)
. (6)

where

ζ
(
t, l, θ̃

)
, w1−N

l

N∏
n=1

p
(
Hl|ψn(t); θ̃

)
, (7)

which we define as a consensus decision [7], and χ
(
t, θ̃
)

acts as a
normalization term that can be ignored [7, 19]. Hence, only poste-
rior probabilities, p

(
Hl|ψn(t); θ̃

)
, l = 1, ..., L and n = 1, ...N ,

need to be shared between nodes (the global posterior probabilities
are obtained by fusing the local estimates and normalizing the con-
sensus decision). In [7], we argued that, in practice, it may be more
beneficial to approximate the product-rule based consensus decision
using the following sum rule [7, 19], which is used in this paper

ζ
(
t, l, θ̃

)
≈ (1−N)wl +

N∑
n=1

p
(
Hl|ψn(t); θ̃

)
. (8)

4.2. Inter-Node Feature Vector

It is known that the energy of the recorded speech varies significantly
with respect to the source-sensor distance (proportional to inverse
square distance in a free field). This property can be exploited in
DMAs where some nodes may be spatially closer to a set of sources
than others as in Figure 1, for instance. Unfortunately, the defini-
tion of ψn(t) within every node does not allow us to capture the
energy attenuation effect due to the node-source distance. It is there-
fore necessary to find another feature that captures this effect, and
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include it in our source clustering algorithm. To this end, we define
the feature vector

ρ(t) , [ρ1(t) · · · ρN (t)]T , (9)

where for n = 1, ..., N ρn(t) , ∥yn(t)∥2

∥y(t)∥2 , which clearly captures
the amplitude attenuation between nodes. Note that to form this fea-
ture vector, node n has to share only its synthesized signal, ∥yn∥2,
with other nodes, then the denominator is formed by summing all
terms. This is in a way similar to [20, 21] and some references
therein, where the idea is to share only some synthesized signals
(output of the noise reduction filter) with other nodes in an iterative
way to obtain a near-optimal centralized solution.

To find the probabilistic model, which better fits the distribu-
tion of ρ(t), we first note that by assuming that all nodes detect
all sources

∑N−1
n=1 ρn(t) < 1, 0 < ρn(t) < 1, and ρN (t) =

1 −
∑N−1

n=1 ρn(t). Furthermore, ρ(t) results from the contributions
of all sources. Hence, it is natural to use the multimodal DMM [11]

p (ρ(t);α) =

L∑
l=1

wlp (ρ(t)|Hl;αl) (10)

where [10, 11]

p (ρ(t)|Hl;αl) =
Γ
(∑N

n=1 αn,l

)
∏N

n=1 Γ (αn,l)

N∏
n=1

ρ
αn,l−1
n (t), (11)

α ,
[
αT

1 · · ·αT
L

]T
, and αl , [α1,l · · ·αN,L]

T .

4.3. Integration and Parameter Estimation Using EM

Note that ρ(t) andψn(t), n = 1, ..., N , capture two complementary
types of information in the DMA, and it is reasonable to assume that
they are independent. Consequently, we can combine both cues to
compute ℘

(
t, l, θ̌

)
, p(Hl|ρ(t), ψ̃(t); θ̌) as

℘
(
t, l, θ̌

)
=

℘̃
(
t, l, θ̃

)
p (ρ(t)|Hl;αl)∑L

l=1 ℘̃
(
t, l, θ̃

)
p (ρ(t)|Hl;αl)

. (12)

Using the law of total probability, we have

p
(
ψ̃(t),ρ(t); θ̌

)
=

L∑
l=1

wlp
(
ψ̃(t),ρ(t)|Hl; θ̌

)
, (13)

where θ̌ contains all model parameters, which can be determined by
maximizing (13), or equivalently its associated auxiliary function

Q(θ̌, θ̌
′
) =

T∑
t=1

L∑
l=1

℘
(
t, l, θ̌

′
)
ln
(
p
(
ψ̃(t),ρ(t),Hl; θ̌

))
= Q1(θ̌, θ̌

′
) +Q2(θ̌, θ̌

′
) +Q3(θ̌, θ̌

′
) (14)

where1 θ̌
′

is some prior estimate of θ̌

Q1(θ̌, θ̌
′
) =

∑
t,l

℘
(
t, l, θ̌

′
)
ln (wl), (15)

Q2(θ̌, θ̌
′
) =

∑
t,l,n

℘
(
t, l, θ̌

′
)
ln (p (ψn(t)|Hl;an,l, κn,l)), (16)

1∑T
t=1

∑L
l=1

∑N
n=1 was denoted as

∑
t,l,n due to space constraints.

and
Q3(θ̌, θ̌

′
) =

∑
t,l

℘
(
t, l, θ̌

′
)
ln (p (ρ(t)|Hl;αl)). (17)

Now, we can determine all the model parameters. Indeed, by tak-
ing account of the constraint that

∑L
l=1 wl = 1 and maximizing

Q1(θ̌, θ̌
′
) with respect to (w.r.t.) wl, we find that

wl =

T∑
t=1

℘
(
t, l, θ̌

′
)
/T. (18)

Similarly, by setting the derivative of Q2(θ̌, θ̌
′
) w.r.t. κn,l and an,l

to 0, we can demonstrate that an,l is given by the eigenvector corre-
sponding to the maximum eigenvalue, rn,l, of the matrix

Rn,l =

∑T
t=1 ℘

(
t, l, θ̌

′
)
ψn(t)ψ

H
n (t)∑T

t=1 ℘
(
t, l, θ̌

′
) (19)

and κn,l satisfies
∂M(1,Mn,κn,l)

∂κn,l

M (1,Mn, κn,l)
= rn,l, (20)

which has no closed-form solution for κn,l. This particular problem
was intensively studied in [12, 13], and approximations and bounds
were provided. Here, we consider the simple approximation [13]

κn,l ≈
Mnrn,l − 1

rn,l (1− rn,l)
(1 + rn,l) . (21)

Finally, we note that determining the DMM model parameters by
maximizing Q(θ̌, θ̌

′
) does not lead to a closed form solution [10,11].

Nonetheless, a simple and fast Newton-Raphson algorithm com-
bined with the method of moments can lead to very accurate es-
timates of these parameters [10]. To guarantee the positiveness
of the estimated αn,l, we follow the approach described in [11],
by re-parameterizing αn,l = exp (βn,l) for some real βn,l. Let
βl = [β1,l · · ·βN,l]

T , then by performing the following iteration a
few times (a maximum of five times in our experiments)

β
(j)
l = β

(j−1)
l −∇−1

(
β

(j−1)
l

)
∆
(
β

(j−1)
l

)
(22)

for iteration j, we can accurately estimate αl = exp(βl). In
(22), ∆(βl) is the gradient of Q(θ̌, θ̌

′
) w.r.t. β, and is analyti-

cally expressed in Appendix. Furthermore, ∇ (βl) is the Hessian of
Q(θ̌, θ̌

′
), which can be easily inverted as explained in Appendix.

To sum up, the E-step of our algorithm implements (6), (8), (11),
and (12), while its M-step implements (18), (19), (21), and (22).
Clustering is then achieved using the final posterior probabilities.

5. EXPERIMENTAL RESULTS

Our experiments were conducted using the setup shown in Figure 1,
where we have three speakers in a reverberant room, and assume that
there are three nodes to record and process them. Every node has a
pair of microphones with a 0.2 m spacing. The image method [22]
was used to simulate the propagation environment with a reverber-
ation time of 240 ms. Twenty random combinations of speech ut-
terances of different speakers from the TIMIT database [23] were
used in our experiments, and the BSS results shown below were ob-
tained by averaging over all combinations. The speech signals were
convoluted with the channel impulse responses and computer gen-
erated white Gaussian noise was added to the signals such that the
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Fig. 1. Investigated propagation scenario.
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Fig. 2. Performance in terms of SIR.

input SNR was 30 dB. We compare the proposed source clustering
using both feature vectors (denoted as Distributed 2) with our initial
approach using only intra-node information (denoted as Distributed
1) [7], local clustering with Oracle best node selection (denoted as
Node-wise), and the centralized source clustering (denoted as Cen-
tralized) described in Section 3. We evaluated the performance of
all the investigated methods using the method proposed in [24] with
the BSS metrics being the output signal-to-interference ratio (SIR),
the signal-to-artifacts ratio (SAR), and the signal-to-distortion ratio
(SDR).

In Figure 2, we confirm that our initial posterior probability fu-
sion reported in [7] allows us to achieve larger output SIR than the
best-node selection approach thanks to information sharing between
nodes. The inclusion of the new feature vector leads to a slight in-
crease in the SIR and brings the performance closer to that of the
centralized processing. In Figure 3, we see that Distributed 1 leads
to increased signal distortion, which seems to come at the price of
the increased SIR observed in Figure 2. However, it is also clear that
Distributed 2 allows us to better preserve the desired signals thanks
to the integration of the inter-node location information. The over-
all separation results are summarized in Figure 4 in terms of SDR,
where we see that the integration of both feature vectors outperforms
both best node selection and Distributed 1, and approaches the cen-
tralized solution performance.

6. CONCLUSION
In this paper, we proposed a source clustering approach for DMAs,
which integrated two distinct location features. The first is the nor-
malized local recording vector, which captures the acoustic channel
diversity within each node, while the second models the source-node
distance effect on speech energy, and, hence, captures the intern-
ode effect. We modeled the two feature vectors using Watson and
Dirichlet mixture models respectively. Furthermore, we proposed
an approach for integrating the contributions of all nodes in the es-
timation of the posterior probabilities of the speech clusters. Our
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Fig. 3. Performance in terms of SAR.
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Fig. 4. Performance in terms of SDR.

evaluations demonstrated that including the recorded energy level
difference between the nodes improves the DMA-based BSS perfor-
mance.

Appendix

For clarity, we define γn,l =
∑T

t=1 ℘
(
t, l, θ̌

′
)
ln (ρn(t)) and τl =∑T

t=1 ℘
(
t, l, θ̌

′
)

. Then, we find that the nth entry of ∆(βl) is

∂Q(θ̌, θ̌
′
)

∂βn,l
= αn,lγn,l + αn,l

(
Ψ

(
N∑

n=1

αn,l

)
−Ψ(αn,l)

)
τl.

(23)
Ψ(·) is the digamma function [18]. The diagonal elements of ∇(βl)
are expressed as

∂2Q(θ̌, θ̌
′
)

∂β2
n,l

=
∂Q(θ̌, θ̌

′
)

∂βn,l
+α2

n,l

(
Ψ′

(
N∑

n=1

αn,l

)
−Ψ′ (αn,l)

)
τl,

(24)
while its off-diagonal terms are given by

∂2Q(θ̌, θ̌
′
)

∂βn,i∂βn,l
= αn,lαn,iΨ

′

(
N∑

n=1

αn,l

)
τl. (25)

Ψ′ (·) is the trigamma function [18]. Then, it is easy to see that
∇(βl) can be compactly expressed as

∇(βl) = diag
[
∆(βl)− τlαl ⊙αl ⊙Ψ′ (αl)

]
+τlΨ

′

(
N∑

n=1

αn,l

)
αlα

T
l (26)

where ⊙ is the element-wise multiplication and diag [·] is the diag-
onal matrix with input vector on its diagonal. The inverse of this
matrix can be very easily computed using the Sherman-Morrisson
formula [25].
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