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ABSTRACT

The optimal weights for a beamformer that provide maximum
directivity, are often found to be severely lacking in terms of
robustness. Although an ideal implementation of the beam-
former with these weights provides high directivity, minor
perturbations of the weights or of sensor placement cause se-
vere degradation. Therefore, a robustness constraint is often
imposed during the beamformer’s design stage. The classical
method of diagonal loading is commonly used for this pur-
pose. There are known results in this field which pertain to an
array consisting of sensors with identical directivity-patterns
and orientations. We extend these results to account for sen-
sors with nonidentical directivity patterns, and sensors which
share placement errors. We show that in such cases, modifica-
tion of the classical loading scheme to incorporate nonidenti-
cal diagonal elements and off-diagonal elements is beneficial.

Index Terms— robust beamforming, maximum directiv-
ity

1. INTRODUCTION

Signal acquisition is often conducted in environments which
contain noise and interference. For example, a hands-free
phone conversation taking place inside a moving automobile
may suffer from traffic noise, engine noise, and speech inter-
ference from passengers. Designing systems to reduce noise
is a primary problem in the realm of signal processing. Typ-
ical systems employ a beamformer which combines several
channels in such a way that noise is reduced.

The choice of weights assigned to each channel affects
the beamformer’s performance and determines the resulting
beampattern. It is often desirable to attain maximum array
directivity. The minimum variance distortionless response
(MVDR) weights achieve this goal when designed for a dif-
fuse noise filed [1].

The resulting MVDR beamformer often suffers from dif-
ficulties in practical implementation. Slight deviations from
the assumed scenario can lead to a severe degradation in per-
formance [2]. For instance, small variations in the sensors’
gains, phases, or positionings can have a negative impact upon
the noise reduction [3]. Similarly, minor deviations from the
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assumed steering-vector [4, 5] or from the assumed noise cor-
relation matrix of the interference signals [6] can adversely
affect the performance.

The detrimental effects of random perturbations are ev-
ident upon inspecting their effects on beam-power. Gilbert
and Morgan [3] have shown that the introduction of random
errors in weights of sensors and their placements induces an
increase in the mean beam-power of an array. In effect, the ar-
ray’s mean beam-power consists of two components: a nomi-
nal beam-power determined by the assumed scenario, and an
excess beam-power caused by random errors. Since the ex-
cess beam-power leads to an increase in the amount of noise
received, its level can be used as a measure of sensitivity to
errors. It was shown that the excess beam-power level is pro-
portional to the square of the Euclidian norm of the vector
containing the beamformer weights.

A number of methods have been proposed to create beam-
formers which are robust to perturbations from the assumed
scenario [4, 5, 7, 8]. Different methods may correspond to
somewhat different goals or prior knowledge of the scenario.
The method of diagonal loading (i.e., regularizing the noise-
covariance matrix by adding a multiple of the unity matrix)
is possibly the most widely used. In [3], Gilbert and Mor-
gan introduced diagonal loading as a method for increasing
robustness towards weight and placement errors while main-
taining the smallest possible loss of directivity.

The analysis and the results in [3] pertain to an array con-
sisting of sensors with identical directivity patterns. For an
array constructed with sensors of nonidentical directivity pat-
terns, the situation is more complex. Poulsen [9] analyzed
the case of an array of vector-sensors (i.e., an array consisting
of a monopole collocated with a set of orthogonally oriented
dipoles). He showed that sensors with different directivities
affect the excess beam-power differently. In the context of
vector-sensor arrays, it has been suggested [9, 10] that robust
beamforming be preformed by using a diagonal loading ma-
trix with nonidentical values. However, no systematic method
for determining the values of this loading matrix is provided.

In the current paper, we extend the analysis of [3, 9] to-
wards an array of sensors with an arbitrary combination of di-
rectivity patterns (e.g., cardioid microphones and acoustical
vector-sensors). Our results indicate that a modified version
of diagonal loading should be employed. The main diagonal
of the loading matrix may contain nonidentical elements and
off-diagonal elements may be nonzero.
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2. BACKGROUND

Consider an array consisting of N sensors producing N sig-
nals x1...N (ω) in the frequency domain, where ω represents
frequency. The response of the n-th sensor to a plane wave
(i.e., the sensor’s directivity pattern) is denoted sn(u, ω),
where u is a unit-vector corresponding to the direction-of-
arrival (DOA). The signals and directivity responses are
concatenated into the column-vectors x(ω) and s(u, ω) re-
spectively. The sensor positions are denoted by the matrix
P with dimensions 3 × N . The steering-vector portrays the
overall array response which consists of the individual sen-
sors’ directivities and phase shifts due to propagation delays.
It is given by:

v(u, ω) = s� exp{j k ·PTu} , (1)

where k is the wavenumber, and the operator � represents
the Hadamard (element-wise) product. When a signal g(ω)
arrives from the direction u0, the sensors signals are given by
x(ω) = v(u0, ω)g(ω) + n(ω), where n(ω) is noise.

The beamformer produces an output signal by performing
a weighted sum of the input channels1:

y = wHx , (2)

where w = [w1 . . . wN ]T contains the weights corresponding
to each sensor. The beampattern is given by:

BP(u) = wHv(u) , (3)

and the beam-power is given by:

Ψ(u) = |wHv(u)|2 . (4)

Let the matrix Φ represent the covariance of the noise
components at the different sensors. The noise level at the
beamformer’s output is given by wHΦw. In general, we wish
that the beamformer should have a unity response in some de-
sired direction ud while reducing noise. The resulting MVDR
beamformer is given as:

wMVDR =
Φ−1vd

vHd Φ−1vd
, (5)

where vd = v(ud). When the covariance matrix corresponds
to diffuse noise (Φ = Φdif ), (5) maximizes directivity.

Errors in our evaluation of the scenario can increase the
mean beam-power and reduce the signal to noise ratio (SNR).
When all sensors have identical directivity, the increase in
mean beam-power is proportional to ‖w‖2. In order to reduce
sensitivity, the level of ‖w‖2 is controlled by the amount of
diagonal loading [3, 4]; i.e., the matrix Φ of (5) is replaced by
Φ + µI. When µ = 0, this is identical to the MVDR beam-
former. Increasing µ enhances robustness by reducing ‖w‖2
at the expense of diminished noise reduction.

1In the interest of consciences, explicit dependence on frequency is
dropped from this point onwards.

3. EXCESS BEAM-POWER

3.1. Perturbation of weights

Let us assume that the weight vector can be decomposed as
w = w0 + we, where w0 represents the nominal values and
we represents random perturbations. The vector w0 is deter-
ministic and we is a random variable with zero mean. The
mean beampattern is:

Ew{BP} = E{(w0 + we)
Hv(u)} = wH

0 v(u) , (6)

where Ew{·} is statistical expectation with respect to the
weights. Accordingly, the mean beampattern is not influ-
enced by the perturbations. However, the mean beam-power
is:

E{Ψ} = Ew{|(w0 + we)
Hv(u)|2} (7)

= |wH
0 v(u)|2 + Ew{|wH

e v(u)|2} .

The first term corresponds to the nominal beam-power,
whereas the second term is excess beam-power caused by
perturbations. This excess term can be expressed as:

Ψex =Ew{|wH
e v(u)|2} = vH(u)Ew{wew

H
e }v(u) . (8)

If we assume that the perturbations of different sensors are
uncorrelated, then Ew{wew

H
e } is a diagonal matrix. The ex-

cess term becomes:

Ψex =

N∑
n=1

Ew{|wen |2} · |vn(u)|2 (9)

=

N∑
n=1

Ew{|wen |2} · |sn(u)|2 ,

where wen and vn are the n-th elements of we and v, re-
spectively. The final stage follows from the absolute value
canceling the phase shifts in the steering-vector.

The intuitive interpretation of (9) is that for each sensor,
errors in the weight values add to the mean beam-power a
component proportional to the directivity power of that par-
ticular sensor. This generalizes the classical case, in which
the contributions of all sensors have identical directivity pat-
terns.

3.2. Perturbation of sensors location

Let us assume that the sensor-placement matrix can be de-
composed as P = P0 +Pe, where P0 represents the nominal
locations and Pe represents random perturbations. Substitut-
ing into (1) yields:

v(u) = s(u)� exp{j k · (P0 + Pe)
Tu} (10)

=
[
s(u)� exp{j k ·PT

0 u}
]
� exp{j k ·PT

e u}
= v0(u)� exp{j k ·PT

e u} ,
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where v0(u) is the nominal steering-vector. The mean beam-
pattern is EP{BP(u)} = wHE{v(u)}, where EP{·} de-
notes statistical expectation with respect to positions. Assume
that the placements of different sensors have identical spheri-
cal distributions (which are not necessarily independent). Let
us define:

κ = EP

{
exp{j k · pTemu}

}
, (11)

where pem is the m-th column of P. Since the distribu-
tions are identical, κ is independent of m, and since the dis-
tributions are spherical, κ is also independent of u; hence,
EP{BP(u)} = κ · wHv0(u). This indicates that perturba-
tions of sensor location attenuate the mean beampattern from
its nominal value by a factor of κ.

The mean beam-power EP{Ψ} is:

EP

{
|wHv(u)|2

}
= wHEP

{
v(u)vH(u)

}
w . (12)

The term EP

{
v(u)vH(u)

}
can be simplified:

EP

{
v(u)vH(u)

} (10)
= (13)

v0(u)vH0 (u)� EP

{
exp{j k ·PT

e u}(exp{j k ·PT
e u})H

}
.

Let us inspect the final term EP

{
exp{j k · PT

e u}(exp{j k ·
PT

e u})H
}

, which constitutes an N × N matrix. We assume
that if two sensors do not share the same physical packaging
then their placement perturbations are independent; otherwise
their perturbations are identical. Elements of the matrix cor-
responding to sensors which do not share packaging will have
the value κ2. All other elements will have unity values (since
|exp{j k · pTemu}|2 = 1). Hence, the matrix equals:

κ2 · 1N×N + (1− κ2) ·Ξ , (14)

where 1N×N is a matrix of ones and Ξ is a matrix whose el-
ements equal one for sensors with shared packaging and zero
otherwise. Substituting (14) back into (13) and then into (12)
yields:

EP{Ψ} = κ2 ·wHv0(u)vH0 (u)w

+ (1− κ2) ·wH [Ξ� v0(u)vH0 (u)]w . (15)

The first term corresponds to the nominal beam-power atten-
uated by κ2, and the second term corresponds to the excess
beam-power. If sensors do not share packaging then Ξ be-
comes the identity matrix, resulting in:

Ψex = (1− κ2)

N∑
n=1

w2
n · |sn(u)|2 . (16)

Here too, each sensor contributes a factor to the excess beam-
power which corresponds to its own directivity pattern. Note
that for cases of joint packaging, Ξ has off-diagonal elements
which signify cross-sensor influence on the beam-power.

When perturbations exist in both the weight values and
the sensor locations, then the analyses of subsections 3.1 and

3.2 may be combined. Assuming that the two error types are
uncorrelated, we have:

Ew,P{Ψ} =κ2|wH
0 v0(u)|2 +

N∑
n=1

Ew{|wen |2} · |sn(u)|2

+ (1− κ2) ·wH
0 [Ξ� v0(u)vH0 (u)]w0 . (17)

4. ROBUST BEAMFORMER DESIGN

Beamformer design determines the nominal weight values w0

and thus has a direct impact on the first and third terms of (17)
corresponding, respectively, to nominal beam-power and ex-
cess beam-power due to placement errors. The second term
(excess beam-power due to weight errors) depends on the
variances Ew{|wen |2} which are not specified by the design.
However, these variance values can be modeled as being re-
lated to the nominal designEw{|wen |2} = β2 |w0n |2; i.e., the
standard deviation of a weight is proportional to its nominal
value with a factor of β. Consequently, (17) can be rewritten
as:

Ew,P{Ψ} =κ2|wH
0 v0(u)|2 + β2wH

0 (v0(u)vH0 (u)� I)w0

+ (1− κ2) ·wH
0 [Ξ� v0(u)vH0 (u)]w0 , (18)

and all three terms are now affected by w0.
In general, noise may arrive from different directions

with different levels of intensity. Let A(u) be a func-
tion describing the level of noise emanating from each
direction. Integrating over steering-vectors, correspond-
ing to all directions, produces the noise covariance matrix
Φ = 1

4π

∫ ∫
u∈SA(u)v(u)vH(u)dΩ, where S is the unit-

sphere. Similarly, the mean power of noise at the beam-
former’s output can be calculated by integrating (18) over all
directions to yield:

κ2wH
0 Φ0w0 + β2wH

0 (Φ0 � I)w0

+ (1− κ2) ·wH
0 (Ξ�Φ0)w0 , (19)

where Φ0 corresponds to the nominal coavariance matrix.
Typical MVDR design, which does not aim for robust-

ness, seeks to minimize the value of the first term of (19)
corresponding to nominal noise wH

0 Φ0w0, while maintain-
ing a unity response in the direction of ud. A robust design
will seek to minimize the excess noise as well [i.e., Φ of (5) is
replaced by Φrob = Φ0� [κ2 ·1N×N +β2 ·I+(1−κ2) ·Ξ)].

Usually, the values of β and κ are unknown and Φrob can-
not be evaluated. In this case, the sensitivity to errors is indi-
cated by ‖w0‖2L = wH

0 Lw0, where

L = α · (Φ0 � I) + (1− α) · (Ξ�Φ0) , (20)

and α ∈ [0, 1] determines the relative importance attributed
by the designer to the different error types (based on an es-
timate of β2

β2+1−κ2 ). In the common case where sensors are
individually packaged, Ξ = I such that L = Φ0 � I,∀α and
the designer is no longer required to specify α.
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A robust design seeks to minimize the nominal noise term
while maintaining a unity response towards ud and constrain-
ing the magnitude of ‖w0‖2L. Solving this constrained opti-
mization problem with Lagrange multipliers yields:

wrobust =
(Φ0 + µL)−1vd

vHd (Φ0 + µL)−1vd
. (21)

It should be noted that when all sensors have identical
directivity patterns and the perturbations of the positions are
i.i.d. then L becomes a scaled identity matrix. This is the con-
ventional diagonal loading scheme (the extra scaling constant
is absorbed by the Lagrange multiplier µ). However, when
sensors have different directivity patterns, elements along the
main diagonal of Φ0 may vary leading to diagonal loading
with nonidentical elements. Furthermore, Ξ may contain
nonzero off-diagonal elements (due to shared packaging)
leading to nondiagonal loading matrices.

5. EVALUATION

In the following two examples, we compare the performances
of (21) with conventional diagonal loading. Robustness to-
wards weight and placement errors will be evaluated with the
robustness metric of RM = 1/‖w0‖2L.

First, we inspect the case of an array operating in a dif-
fuse noise field which consists of a monopole and a collocated
dipole2 oriented towards the desired DOA. The diffuse noise
covariance matrix3 is Φdif = diag([1 1

3 ]) and the nominal
steering-vector is v0 = [1 1]T . To attain maximum direc-
tivity, one uses the MVDR beamformer (5) [with Φ = Φdif ]
yielding a directivity index (DI) of 6 dB using the weight vec-
tor w = [ 14

3
4 ]T . The beampattern of this array corresponds

to a hypercardioid. One might attempt to improve robustness
by applying conventional diagonal loading. Using µ → ∞,
it would appear that maximum robustness is attained by the
weights w = [ 12

1
2 ]T (which correspond to a cardioid beam-

pattern) at the expense of reducing the DI to 4.8 dB. However,
when RM is used to assess these two beamformers4, the car-
dioid beamformer has an RM of 3 dB whereas the hypercar-
dioid beamformer has an RM of 3.6 dB. The diagonal loading
is detrimental and actually reduces robustness in this case. In
fact, the MVDR hypercardioid weights also happen to have
the highest RM, and will be returned by (21) for any (non-
negative) value of µ.

Typically, the use of loading methods for design of ro-
bust beamformers produces a set of possible weights result-
ing from different values of µ. The designer selects from a

2This configuration should not be confused with a differential microphone
array. The latter can produce beampatterns which closely approximate a com-
bination of monopole and dipole patterns but suffers from poor robustness
which characterizes superdirectivity.

3References [11] and [12] discuss covariance relations pertinent to the
current and subsequent examples.

4In this scenario, Ξ = 13×3 and Φ0= Φdif is diagonal. Hence, L of
(20) equals Φ0 and is independent of α.
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Fig. 1. Options for tradeoff between DI and RM for different
robust design methods.

continuum of possibilities for tradeoff between DI and ro-
bustness. In our next example, we demonstrate that the set
of beamformers produced by the modified loading method is
preferable to that obtained by conventional diagonal loading.

Consider the scenario of an array consisting of two de-
vices – each device comprising two collocated cardioids ori-
ented to the front and rear respectively. These devices are
placed side by side separated by a distance of d = 22 cm.
The scenario described may be viewed as a rather simplistic
representation of an array composed of two hearing aid de-
vices.

We examine the performance for a signal arriving from
the direction θ = 70◦ with respect to the forward direction.
Fig. 1 portrays the results of conventional diagonal loading
(dashed blue) and modified loading (solid red) in terms of
DI and RM. The frequency analyzed is 400 Hz. We have
assumed that only perturbations of device placement are sig-
nificant (α = 0). Note that in this case L is not diagonal. The
modified loading method produces a better tradeoff than con-
ventional diagonal loading. For the same level of robustness,
a higher DI is attainable. The difference can reach 1.5 dB.

The above two examples illustrate that the use of the pro-
posed modified loading method instead of traditional diagonal
loading can be beneficial.

6. CONCLUSION

In this paper, we derived expressions for the mean beam-
power of an array with random perturbations in weight values
and sensor locations. These random perturbations cause an
increase in beam-power which leads to higher noise levels. In
a diffuse scenario, the excess noise can be reduced by apply-
ing a modified loading scheme. This scheme can differ from
conventional diagonal loading by employing a loading ma-
trix with nonidentical elements on the main diagonal (when
sensor directivities differ) and off-diagonal elements (when
placement errors are correlated). The modified scheme im-
proves robustness with respect to the errors discussed.
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