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ABSTRACT

Multichannel sparse representation of acoustic sources has shown to
provide an attractive framework for source separation. The multi-
channel sparse modeling assumes an ability to describe signals as
linear combinations of few atoms from a pre-specified dictionary.
The dictionary is built by simulating room impulse responses on a
grid of locations, exploiting a prior knowledge on the room geome-
try and reflection coefficients. However, due to the simplified mod-
eling, any mismatch between the simulated and true observed RIRs
would generate a considerable distortion in the recovered output sig-
nals. In this work we propose an unsupervised adaptation of the dic-
tionary through a semi-blind weighted Natural Gradient, assuming
spatio-temporal source sparseness. The system continuously adapts
the atoms with the incoming data, improving the match between the
dictionary and the true mixing parameters. Results over simulated
data show that the proposed framework is a promising solution to
underdetermined convolutive source separation in difficult acoustic
scenarios.

Index Terms— multi-channel detection, source separation,
sparse signal, matching pursuit, source localization.

1. INTRODUCTION

Underdetermined convolutive source separation is one of the most
challenging problem related to acoustic source enhancement. Sev-
eral algorithms have been proposed in the last year but still there
is not a widely recognized solution. Many of them separate the
sources with spectral filters, exploiting simplified spatial models for
the acoustic propagation [1][2][3]. However, the need for modeling
long separating filters, due to the presence of high reverberation, is
one of the main factors limiting the performance of this class of algo-
rithms. To mitigate the effect of reverberation, in some methods the
separation problem is solved separately in different subbands [4] and
later spatio-temporal models are used to cluster signal components
related to the same source [5]. In alternative, other algorithms use
temporal and spectral redundancies for factorizing different source
components [6]. As discussed in [5] one of the key tasks that has to
be solved is the estimation of the wide-band source mixing param-
eters. In fact, if the complete mixing system is available, spectral
masking or Lp-norm minimization can be adopted for segregating
the mixtures in their individual source components [7].

While unsupervised techniques are commonly adopted for
source separation, nesting a prior knowledge in the estimation
process is a new trend which promises to improve the robustness of
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blind methods. An emerging framework well fitting this view is mul-
tichannel sparse modeling (MSM). Sparse modeling of data assumes
an ability to describe the signal using a pre-specified dictionary. The
dictionary involves a proper definition of atoms in order that sig-
nals can be uniquely represented as a linear combination of them
[8, 9]. In the multichannel scenario, i.e. when the source signals are
recorded by a number of microphones M ≥ 2, the dictionary can
be defined through description of the source mixing parameters. In
low reverberant environments this description can be approximated
by anechoic models [1] while in more echoic environments, RIRs
can be learned from the data off-line [10] when only one source at
the time is active.

An alternative way to generate a spatial dictionary is by using
a model-based definition of the room impulse responses. A dictio-
nary of RIRs between the microphones and a set of points can be
generated explicitly using information of the room geometry and of
the acoustic parameters of the reflective surfaces [11][12]. While this
approach has a high flexibility and requires only a limited knowledge
to generate large dictionaries, any mismatch between the simulated
atoms and the mixing parameters underlying the true mixing process
is cause of high distortion on the recovered signals. In fact, simulated
RIRs always differ from the true ones because they are built on a
simplified geometrical description of the environment. Furthermore,
while the early propagation paths can be approximatively modeled
from the geometry, late reverberation cannot be easily represented
deterministically. Moreover, mismatch arises also depending on the
resolution of the sampling of the spatial locations, which should not
be too high to limit the size of the dictionary. Although the effect of
this mismatch can be mitigated by proper normalizations [12], still
its effect is crucial and it should be reduced as much as possible. In
response to this need, dictionary adaptation with the incoming data
is a possible viable solution.

In this work we fuse the concept of model-based spatial dic-
tionary and blind mixing system estimation in a single framework,
through the effective combination of sparse modeling and ICA. A su-
pervised ICA based on the weighted Natural Gradient is exploited to
adapt the original dictionary with the incoming data. The ICA adap-
tation is based on the assumption of sparse spatio-temporal repre-
sentation of the acoustic sources. Experimental results on simulated
data have shown that the semi-blind learning can sensibly improve
the match between the incoming data and the adapted dictionary with
a consequent considerable improvement in the source separation per-
formance.
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2. SPARSE MODELING FORMULATION

2.1. Signal model

N source signals are assumed to be recorded by an array of
M elements. We refer to the discrete time-frequency repre-
sentation of signals, obtained for example through the Short-
time Fourier Transform (STFT). Let Sn(k, l) and Xm(k, l) be
the l-th STFT frame coefficients obtained for the k-th frequency
bin for the n-th source and m-th mixture signal, respectively.
For convenience of notation we indicate the source signal vec-
tor with S(k, l) = [S1(k, l) · · ·SN (k, l)]T , and the mixtures
X(k, l) = [X1(k, l) · · ·XM (k, l)]T which can be then modeled
as

X(k, l) = H(k)S(k, l). (1)
Equation (1) is a general representation of the mixing system but in
real-world acoustic sources tend to have a highly sparse power repre-
sentation in the STFT domain, i.e. only one source can be considered
dominant in each time-frequency point. Therefore a convenient ap-
proximation is to consider the vector S(k, l) to be all zero other than
for the element n(k, l), which indicates the source dominating the
point (k, l). Following this approximation, a better representation of
the data which is independent on the source variance, is obtained by
computing the ratios between the observed signals and a reference
channel, e.g. the channel m = 1, and normalizing them by their
magnitude

Rm(k, l) =
Xm(k, l)X1(k, l)

∗

|Xm(k, l)X1(k, l)∗|
≃

Hm,n(k,l)(k)H1,n(k,l)(k)
∗

|Hm,n(k,l)(k)H1,n(k,l)(k)∗|
.

(2)
This representation is convenient because the ratios Rm(k, l) pro-
vide a redundant representation of the mixing systems of the sources
∀k, l. Note, the magnitude normalization is useful because it has
the effect of binding the error due to the non perfect sparse assump-
tion (see [12] for details). Therefore, if the sources are static, the
signals can be modeled as linear combinations of few normalized
mixing systems which can be considered atoms of a pre-built spatial
dictionary[11, 12].

The exact modeling of the mixing system would require a geo-
metrical description of all the reflective surfaces and of their sound
absorption characteristic. A reasonable approximation can be ob-
tained through the Image-source model (ISM) [13] if at least room
and array geometry are available. A finite dictionary can be then
modeled by selecting a finite set of points, e.g. on a two-dimensional
grid. The channel ho

m(t) from the o-th location to the acoustic sen-
sor m is simulated through the ISM method and the discrete Fourier
transform is applied to obtain the frequency representation of the im-
pulse response Ho

m(k). A generic atom describing the normalized
multichannel spatial propagation can be represented as

do
m =

[
Ho

m(1)Ho
1 (1)

∗

|Ho
m(1)Ho

1 (1)
∗| , · · · ,

Ho
m(Nbins)H

o
1 (Nbins)

∗

|Ho
m(Nbins)Ho

1 (Nbins)∗|

]T

(3)

do = [do
2; · · · ;do

M ] (4)
while the dictionary including all the simulated atom vectors is de-
fined as D = [d1| · · · |dNatoms ], where Natoms indicates the num-
ber of simulated atoms, according to the used spatial resolution.
Nbins indicates the number of non-symmetric frequency bins, i.e.
L/2 + 1 where L is the window length of the STFT. Equivalently
the observed data can be organized with the same atom representa-
tion as

Rl
m = [Rm(1, l) · · ·Rm(Nbins, l)]

T (5)

Rl = [Rl
2; · · · ;Rl

M ] (6)

3. MODIFIED ORTHOGONAL MATCHING PURSUIT

Searching for the set of atoms best representing our observations is
an NP-hard problem for a redundant dictionary. Nevertheless greedy
approximations such as those based on the matching pursuit (MP) al-
low us to reduce the complexity to a tractable level. In this work we
adopt a modified orthogonal matching pursuit (OMP) [14], which
was used in our former work [12] and has shown to perform well
for the case of matching between atoms and observations. In short,
in MP-based algorithms the atoms are initially matched with the ob-
served data, i.e in our case Rl, according to a predefined matching
operator. The best matching atom is selected and at each i-th it-
eration the effect of it in the observed data is removed through the
computation of a residual Zl

i. Iteratively, the matching procedure
continues with the selection of new atoms matching the last com-
puted residual till a predefined stopping criterion is satisfied, e.g. till
N atoms are selected from the dictionary. Here, we define a match-
ing operator between each atom of our dictionary and the observed
residual as follows. First, assuming also temporal dominance, we
compute the inner product of the columns of the current residual and
the atoms of the sparse dictionary and select the one maximizing it
inside each time frame l

omatch
l = argmax

o
|(do)∗ Zl

i−1|. (7)

where ∗ indicates the conjugate transpose. Thus, the J most frequent
atoms are selected and among of them the one leading to the largest
inner product cumulated over all the frames is chosen:

jmatch = argmax
j

∑
l

|(dqj )∗ Zl
i−1|, j = 1, 2, ..., J (8)

where qj indicates the index of the J-atoms selected with (7).
We indicate with DΓi the sub-dictionary of the selected matched

atoms in the i-th iteration spanned by the atoms indexed in the sub-
space Γi, D†

Γi
is the pseudo-inverse of DΓi , and D∗

Γi
is the conju-

gate transpose of DΓi . The OMP algorithm can be summarized as
follows
———————————————————————————
Initialize: Zl

0 = Rl, Γ0 = ϕ, DΓ0 = [0].
For i = 1 to N

find the index jmatch of the best matching atom with Zl
i−1,

∀l as in (8)
update the sub-dictionary by the new atom DΓi

= [DΓi−1
|djmatch

],
update the sub-space by the new atom index Γi = Γi−1 ∪ jmatch,
orthogonal projection : P̂l

i = D†
Γi

Zl
i−1, ∀l,

update the residual : Zl
i = Zl

i−1 −DΓi
P̂l

i, ∀l,
normalize each element of the residual vector Zl

i to unit magnitude.
Return
———————————————————————————

4. DICTIONARY ADAPTATION THROUGH WEIGHTED
NATURAL GRADIENT

As discussed before, the mismatch between the true mixing systems
and the atoms in the dictionary is the main cause of poor perfor-
mance of spatial sparse modeling. In contrast, blind techniques are
able to estimate the mixing system without no specific geometrical
knowledge and then better adapt to the observed data. However,
their robustness is limited by low convergence, high estimation vari-
ance and signal conditions not well fitting the general hypothesis
of independence in short-time. Here we effectively combine both
the approaches in order to compensate their individual weak points,
leading to a semi-blind estimation method.
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We start with the hypothesis that there is only one source dom-
inating a specific STFT frame. Therefore, each instant is used to
adapt only the atom related to the dominating source. For this pur-
pose we use a modification of the weighted Natural Gradient (wNG)
proposed in [5]. The main idea behind wNG is to re-weight the gra-
dient according to the likelihood of dominance of a source in a given
frame in order to selectively estimate the mixing parameters related
to different spatial locations. Following this idea, we select the atom
in the dictionary best matching with the observed frame l

õ = argmax
o

Pr(o, l), Pr(o, l) = |(do)∗ Rl|, (9)

and normalize the respective projection as

Pr(õ, l) =
Pr(õ, l)− Prmin

õ

Prmax
õ − Prmin

õ

(10)

where Prmin
õ and Prmax

õ are the minimum and maximum projection
of the atom õ with all the previously observed data frames. The
normalized projection is then a weight with values ranging from 0 to
1, indicating the dominance of the source at the location õ and at the
frame l.

A weighting matrix Põ(l) is defined as a diagonal matrix with
the first element equal to Pr(õ, l) and the remaining elements set to
1−Pr(õ, l). A squared M×M mixing matrix, describing the source
propagating from the location related to the atom o at the frequency
bin k, is initialized as

Ĥo(k) =

 1 0 · · · 0
do
2(k) 1 · · · 0
· · · · · · · · · · · ·

do
M (k) 0 · · · 1

 , ∀o (11)

where do
m(k) indicates the k-th element of the vector do

m Then, ac-
cording to the weighted NG, for each frame l, the atom selected in
(9) and its corresponding mixing system is updated as follows

Y(k, l) = [Ĥõ(k)]−1X(k, l) (12)

∆H(k) = [Ĥõ(k)(I− Φ(Y(k, l))Y(k, l)H)]Põ(l) (13)

Ĥõ(k) = Ĥõ(k)− η∆H(k) (14)

dõ
m =

[
Ĥ õ

m1(1)Ĥ
õ
11(1)

∗

|Ĥ õ
m1(1)Ĥ

õ
11(1)

∗|
, · · · , Ĥ õ

m1(Nbins)Ĥ
õ
11(Nbins)

∗

|Ĥ õ
m1(Nbins)Ĥ õ

11(Nbins)∗|

]T

(15)
dõ = [dõ

2; · · · ;dõ
M ] (16)

where η is the adaptation step-size, I the identity matrix and Φ(·) is a
non-linearity. In practice, the weighting matrix induces the gradient
to update the first column of Ĥõ(k) when the source located in õ is
dominant.

Interestingly, the above adaptation structure differs from that
of traditional on-line determined BSS which updates a single mix-
ing/demixing matrix, in order to split the observed mixtures in their
individual components. In contrast the proposed algorithm realizes
a semi-blind spatio-temporal learning, i.e. the learning proceeds not
only in time but also in the spatial domain, according to the prior
knowledge given by the geometry. Therefore, the learning can con-
tinue even when the source of interest is silent but some localized
noise sources are active, so that a learning from noise becomes pos-
sible. This is an attractive property which can considerably increase
speed and robustness of separation when compared to any blind
method.

Fig. 1. Simulation setup: dots indicate the true locations of the
sources in the mixtures while cross points in the grid indicate the
spatial locations modeled by the original dictionary.

5. SIMULATION

In order to have a better control of the evaluation, the proposed
method was tested on simulated data1. Room impulse responses re-
lated to a room with size 8 × 6 × 3 meters and an array of 2 omni
directional microphones spaced of 0.2 m were considered. Micro-
phones were located in the middle of the room with the same ele-
vation as for the sources (0.5 m height). Synthetic RIRs were sim-
ulated through ISM between multiple locations in the room and the
microphones, over a grid of two-dimensional points with a spatial
resolution of 0.25 m (i.e. a total of Natoms= 341 atoms), with a
sampling frequency of fs=16kHz and transformed to the discrete
frequency-domain with a DFT of L = 4096 points. For the evalu-
ation, we simulated a mismatched set of RIRs for the generation of
the dictionary and for the generation of the mixtures. The first set
was obtained simulating RIRs assuming uniform absorption coeffi-
cients over all the room surfaces (walls, ceiling and floor) and with
a reverberation time of about T60 = 50 ms. The generation was ob-
tained through the simulator provided by [16]. The second set was
simulated in a similar way but sampling the spatial locations with a
random offset (between 0 and 5 cm) with respect to the atom loca-
tions and using a larger reverberation time T60 = 250 ms. In this
way we generated a double mismatch between the RIRs in the dic-
tionary and those underlying the mixtures. Indeed, this is a realistic
condition that one would observe in real-world because the source
location cannot be exactly restricted to the points sampled in the dic-
tionary and the accuracy of the modeled RIRs is always limited by
the used geometrical model.

For the generation of the mixtures three different datasets were
considered: a set for adaptation used for updating the atoms in the
dictionary; two sets for evaluating the separation performance.

The adaptation set was generated by creating mixtures of acous-
tic sources using domestic noise signal samples in the Freesound2

and the Logic Pro libraries, and added in order to generate a time-
varying degree of overlap (for a maximum of three sources overlap-
ping in time). It consists of two hundred mixtures of 12 seconds each
for a total of about 40 minutes. Time-domain mixtures were gener-
ated by individually convolving simulated RIRs for a given set of
locations (see Figure 1), with the original source signals and adding
the source image contributions at each microphone.

The mixtures for the first evaluation dataset were generated by
using a speech signal selected from the TIMIT database and three
random domestic noise signals. The second evaluation dataset was

1An example of real-world application for the spatial dictionary learning
is presented in [15].

2http://www.freesound.org/
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Fig. 2. Average inner product between the true mixing systems with
the first best matching atom (solid line) and the second best matching
atom (dotted line)

generated by using only speech signals, for a total of 4 overlapping
speakers. Both test sets consist in 20 mixtures of about 15s. In
all the datasets source locations were randomly modified for each
mixture. The discrete time-frequency representation of the mixture
X(k, l) was obtained through STFT with Hanning windows with
length L, shifted of 512 samples. In the weighted Natural Gradient
the adaptation step-size was set to η = 0.02 and the non-linearity to
Φ(x) = tanh(10 · |x|) x

|x| .

6. PERFORMANCE EVALUATION

Two different criteria are considered for the evaluation: system iden-
tification performance and benchmarking of the signal separation.

6.1. System identification

Figure 2 shows the average projection obtained after having adapted
the dictionary with a certain amount of data and showing the projec-
tion when considering the first and second best matching atom. At
the instant 0 the average projection corresponds to the performance
evaluated with the original unadapted dictionary. It can be noted that
as the learning proceeds over time the average projection of the first
atom approaches the unity, which means that each true mixing sys-
tem will eventually have a close match with one of the adapted atom.
On the other hand, the second best matching atom remains unaltered
during the learning which means that the discrimination between the
atoms increases with the learning, which is a desirable feature for
MP-based detection algorithms.

6.2. Signal separation

To complete the analysis we report the signal separation performance
in terms of Signal-to-Distortion ratio (SDR) and Delta Signal-to-
Interference-Ratio (∆SIR), as defined in [17]. In the evaluation both
the original dictionary and the updated dictionary were considered.
The signals were separated using the L0-norm minimization [7], ap-
plied to each time-frequency point independently by defining the full
estimated mixing system as

H̃(k) =

 1 1 · · · 1
do1
2 (k) do2

2 (k) · · · doN
2 (k)

· · · · · · · · · · · ·
do1
M (k) do2

M (k) · · · doN
M (k)

 (17)

where doi
M (k) indicates the k-th element of the atom selected at the

i-th iteration by the OMP algorithm. After separation in each fre-
quency, the Minimal Distortion Principle (MDP) [18] was used to
estimate the multichannel image of each source. Finally, the STFT
signals where reconstructed back to time-domain through a weighted
Overlap-and-add (WOLA) using the Griffin and Lim’s method [19].

Metric Adapted dictionary Original Dictionary
SDR 8.2(2) 2.9(4.5)
∆ SIR 2.9(3.5) -4(7)

Table 1. Mean (standard deviation) performance in dB for separated
signals with and without dictionary adaptation for test dataset with
1 speech + 3 noise random signals. Performance only refer to the
target speech signal.

Metric S1 S2 S3 S4 Avg
SDR 6.4(1.6) 6.4(2.7) 4(2.9) 3.8(3.4) 5.1(2.9)
∆ SIR 14.6(2.4) 3.3(3) 7.2(3.2) 13(3.3) 9.5(5.4)

Adapted dictionary
Metric S1 S2 S3 S4 Avg
SDR 3.2(3.2) 2.4(4.4) 4.7(5.4) 2.3(4.4) 3.1(4.4)
∆ SIR 10.9(4.6) -1.7(5.3) 6.9(6.6) 11.2(4.4) 6.8(7.3)

Original dictionary

Table 2. Mean (standard deviation) performance in dB for separated
signals with and without dictionary adaptation for test dataset with 4
speech signals. S1, S2, S3 and S4 indicate the performance averaged
over multiple locations but for the same source.

Tables 1 and 2 show the performance with and without adaptation
when the separation algorithm is applied to both the test datasets,
reporting mean and standard deviation. In the dataset with a single
speech plus multiple noise sources, performance refers to the speech
signal only, while for the other dataset the performance for each
speaker is reported. In the first dataset a sensible average improve-
ment in SDR can be observed compared with the original dictionary
and the low deviation also indicates a much stable separation result.
It is also worth noting that the SIR improvement is not so large even
with the adaptation because the average SIR is already high at the
input, although it may become very low in some instants where an
impulse noise source becomes active. However, if the adaptation
is not applied a degradation of SIR is also observed (see the nega-
tive value), because separation with wrong demixing systems tends
to cancel the signal of the target speech. With the second dataset
the ∆SIR improvement becomes more clear. In fact, performance
are averaged over all the speech sources with signals of comparable
average power. It is also important to mention that the acoustic con-
ditions of this dataset are much more difficult than those observed in
other public datasets such as the underdetermined speech dataset of
SiSEC2010 [20]. Indeed sources are at considerable distance from
the microphones, averagely around 2.5 meters for a maximum of
about 4 meters, and therefore the direct-to-reverberant ratio is low
making the estimation of the full mixing system very difficult. Fur-
thermore, since for each mixture the source locations were randomly
chosen, sources may be very close to each other.

7. CONCLUSIONS

This article discusses a novel framework for semi-blind source sepa-
ration based on a tight combination of sparse learning and blind sys-
tem identification. A modified matching pursuit algorithm is used to
select from a predefined dictionary the mixing parameters of multi-
ple sources best matching with the observed data. The dictionary is
initialized according to prior environmental geometrical knowledge
and adapted on-line with the incoming data through a weighted Nat-
ural Gradient. It is shown that the spatio-temporal adaptation mit-
igates the mismatch between the true mixing systems and the sim-
ulated geometrical models, which is cause of high distortion in the
separated signals.

Future investigations will focus on improvements in the used ge-
ometrical model and on alternative dictionary adaptation strategies.
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