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ABSTRACT

In this work, we exploit, in addition to sparseness, the temporal
structure of the source signals to address the problem of underde-
termined blind source separation. To achieve good separation per-
formance and reduction of artifacts, a two-stage algorithm is pro-
posed. In the first stage, the auto-regressive (AR) coefficients of
the source signals are estimated using partially separated sources
that have been derived from conventional sparseness-based algo-
rithm. In the second stage, the AR model is combined with the
mixing equation to form a state-space model. This model is subse-
quently solved using the Kalman filter in order to obtain the refined
source estimate. Simulation results show the effectiveness of pro-
posed sparseness-based AR-Kalman (SPARK) algorithm compared
to the conventional sparseness-based algorithms.

Index Terms— Underdetermined blind source separation, au-
toregressive model, instantaneous mixing, state-space model

1. INTRODUCTION

Blind source separation (BSS) is the process of separating multiple
sources from their mixtures without any prior knowledge about the
sources or the mixing process [1]. In convolutive mixing, the mixed
signals are the filtered sum of the source signals whereas for the case
of instantaneous mixing they correspond to the sum of the scaled
versions of the source signals. The instantaneous mixing problem
can be expressed mathematically as

x[n] = As[n], (1)

where x[n] = [x1[n], ..., xM [n]]T is a vector containing theM mix-
tures, A is the M × Q mixing matrix, s[n] = [s1[n], ..., sQ[n]]

T

contains the Q sources and n is the discrete time index.
The BSS problem is well-determined when Q ≤ M and it

can be addressed using independent component analysis (ICA) [1].
However, when Q > M , the mixing matrix A is non-invertible
and the problem is classified as underdetermined BSS (UBSS). The
UBSS problem can be addressed by two stages: estimation of A fol-
lowed by source recovery that employs the estimated A and x[n] [2].
Although many algorithms have already been proposed for the accu-
rate estimation of A [3–7], recovery of the source signals still re-
mains a challenging task. The main aim of this work is to recover
the source signals using x[n] and A.

Many existing algorithms estimate s[n] based on the assumption
that the source signals are sparse [3, 8–12]. These methods assume
that at any time instant the number of active sources are at most
equal to the number of sensors such that the underdetermined prob-
lem can be reformulated as a determined problem. Assuming that

the sources are W-disjoint in the time-frequency (TF) domain, the
degenerate unmixing estimation technique (DUET) [8] compares the
elemental ratio of the mixed samples with the elemental ratio of each
column in A to identify the active source. DUET requires at most
one active source at any single TF point whereas the subspace-based
nondisjoint algorithm proposed in [6] relaxes this requirement; the
number of active sources can be at most equal to M − 1. In [12,13],
under the assumption that the sparse source signals are Laplacian
distributed, the UBSS problem is transformed into a minimum L1-
norm (MLN) optimization problem which is then solved using linear
programming.

In all the sparseness-based algorithms discussed above, the inter-
sample (temporal) correlation within the source signal has not been
taken into account during separation. This results in artifacts in the
separated signals [4, 8, 14]. It is well-known that in signals such as
speech, there exists temporal correlation which can be described us-
ing auto-regressive (AR) coefficients or other alternative models as
in [15–17]. The AR model is chosen in this work for its simplicity
and tractable complexity. The AR model of the source signals has al-
ready been employed in well-determined BSS [18–20] as well as for
speech enhancement [21, 22]. However, these techniques cannot be
directly extended to UBSS as will be explained in Section 3.1. Our
proposed algorithm takes advantage of both sparseness and temporal
structure of the source signals such that signal sparsity is employed
to obtain the partially separated sources from which source AR co-
efficients are estimated. The Kalman filter is then used to refine the
source signal estimate to achieve good separation performance.

2. THE AR MODEL AND LINEAR PREDICTION (LP)

The temporal structure of a signal can be described using the AR
model where the nth sample of the qth source signal sq[n] can be
expressed as a function of its previous samples given by

sq[n] =

p∑
k=1

aq,ksq[n− k] + uq[n], (2)

where uq[n] is the AR model input or innovation process, aq,k, 1 ≤
k ≤ p is the kth AR coefficient of the qth source and p is the pre-
diction order. Given sq[n], its AR coefficients can be estimated by
minimizing the average forward LP error defined by [23]

εq = E

{(
sq[n]−

p∑
k=1

aq,ksq[n− k]

)2}
, (3)

where E{·} is the expectation operator. The optimal aq,k which
minimize εq can be obtained by employing the well-known linear
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prediction coefficient (LPC) approach [24]

p∑
k=1

aq,kr
s
qq[k − l] = rsqq[l], l = 1, 2, · · · , p, (4a)

rsqq[k − l] = E {sq[n− l]sq[n− k]} , (4b)

where rsqq[k − l] = rsqq[l − k] and the superscript s in rsqq denotes
for the source signal. It is useful to note that the autocorrelation of
uq[n], which can be estimated as [24]

ruqq[0] = E
{
u2
q[n]

}
= rsqq[0]−

p∑
k=1

aq,kr
s
qq[k], (5)

quantifies the degree of predictability of sq[n] such that a higher
value of ruqq[0] implies larger difference between sq[n] and its pre-
dicted value

∑p
k=1 aq,ksq[n− k].

3. THE PROPOSED SPARK ALGORITHM

For a UBSS problem, given x[n] and A, there are an infinite num-
ber of s[n] satisfying (1). However, not all of them will have the
expected temporal structure described by (2). Hence we propose to
exploit the temporal structure of the source signal so as to improve
the determinacy of the UBSS problem. The first stage of the pro-
posed algorithm is to estimate the source AR coefficients from x[n]
and the source signals will then be estimated using the Kalman filter
in the second stage.

3.1. Estimation of source AR coefficients from x[n]

In a well-determined BSS problem, the LPC method can directly be
applied on x[n] to estimate the source AR coefficients. However,
such technique cannot directly be extended to the UBSS problem.
More specifically, we assume that the Q uncorrelated sources are
generated by AR models of order p and if the order of the sources
are different, the highest order will be taken as p. Considering all the
Q sources, the vector AR (VAR) model for s[n] can be described by

s[n] =

p∑
k=1

Dks[n− k] + u[n], (6)

where u[n] = [u1[n], u2[n], · · · , uQ[n]]
T is the VAR model input

for s[n] and Dk = diag(a1,k, a2,k, · · · , aQ,k) is a Q×Q diagonal
matrix. Pre-multiplying both sides of (6) by A, we obtain

x[n] =

p∑
k=1

ADks[n− k] + Au[n]. (7)

Note that if there exists a set of matrices Bk such that

BkA = ADk, 1 ≤ k ≤ p, (8)

equation (7) can be written as

x[n] =

p∑
k=1

BkAs[n−k]+Au[n] =

p∑
k=1

Bkx[n−k]+w[n] (9)

which describes the VAR model for x[n] where w[n] = Au[n] is
the VAR model input. We therefore see that the LPC approach can
be applied on x[n] to estimate Bk. Note that for the case of well-
determined BSS where A is invertible, the source AR coefficients
in Dk can then be estimated using A−1BkA. However, since A is
non-invertible in UBSS, Dk cannot be solved even if Bk is available.
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Fig. 1. Temporal structure of the clean signal and the separated sig-
nal obtained by conventional sparseness-based method [13] are sim-
ilar.

In [22], an algorithm to estimate the source AR coefficients has
been proposed for speech enhancement. This algorithm either re-
quires the noise to be Gaussian and source signal to be non-Gaussian
or a reasonably high signal-to-noise ratio (SNR). That is, if the SNR
is high, the LPC method can be applied on x[n] to estimate aq,k.
However, this algorithm cannot be directly extended to the UBSS
problem due to the similarity in probability distribution across the
source signals and the low source-to-interference ratio (SIR) of x[n]
where the interfering sources correspond to noise.

To this end, if the sources can partially be separated to achieve
a higher SIR, these partially-separated signals can then be used to
estimate aq,k. It is important to note that even though the con-
ventional sparseness-based algorithms for UBSS generate significant
amount of of artifacts, the amount of interference is significantly re-
duced [8,14]. This implies that conventional sparseness-based UBSS
methods can be used to obtain the partially-separated signals. It is
also useful to note that conventional sparseness-based UBSS meth-
ods are able to preserve the source temporal structure, characterized
by the similarity in long-term variations of the clean and separated
speech signal as depicted in Fig. 1. We therefore propose to employ
conventional sparseness-based algorithms such as those presented
in [6, 8, 13] to obtain the partially-separated source estimate s̃q[n]
based on which aq,k and ruqq[0] can be estimated using (4) and (5),
respectively.

3.2. State-space model and the Kalman filter

After aq,k and ruqq[0] have been estimated for each source, the UBSS
problem can be translated into a problem of finding s[n] which sat-
isfies both (1) and (2). This problem can, in turn, be reformulated as
the following state-space model [25]:

~s[n] = Φ~s[n− 1] + ~u[n], (10a)
x[n] = H~s[n]. (10b)

Equation (10a) can be obtained by expressing (2) in its companion
form where the pQ× 1 state vector~s[n] is defined by

~s[n] =
[
~sT1 [n],~s

T
2 [n], · · · ,~sTQ[n]

]T
, (11)

where the target source signal sq[n] can be extracted from~s[n] using
the relationship~sq[n] = [sq[n− p+ 1], sq[n− p+ 2], · · · , sq[n]]T .
The pQ× pQ block-diagonal state transition matrix Φ is given by

Φ = diag(Φ1,Φ2, · · · ,ΦQ), (12a)

Φq =


0 1 0 · · · · · · 0
0 0 1 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 0 · · · · · · 0 1

aq,p aq,p−1 · · · · · · aq,2 aq,1

 , (12b)
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where diag(·) in (12a) represents the block diagonal operation. In
addition, the pQ× 1 AR model input ~u[n] is given by

~u[n] =
[
uT
1 [n],u

T
2 [n], · · · ,uT

Q[n]
]T
, (13)

where uq[n] = [0, · · · , 0, uq[n]]
T . Equation (10b) can be obtained

by replacing s[n] in (1) with~s[n] and A with the M × pQ measure-
ment sensitivity matrix H, defined as

H = [H1,H2, · · · ,HQ] , (14)

where Hq = [0, · · · ,0,aq] and aq is the qth column of A.
Since x[n] contains contributions from all the sources, it can be

proved that the UBSS problem in (1) has now been converted into a
determined problem described by (10), i.e., the state-space model is
observable. The Kalman filter can then be used to estimate~s[n] [25]
by first predicting the state value from the previous estimate using

~s[n|n− 1] = Φ~s[n− 1]. (15)

The above ensures that the temporal correlation between neighbor-
ing samples is preserved. The error covariance of the above predic-
tion is then evaluated as

P[n|n− 1] = ΦP[n− 1]ΦT + R~u, (16)

where the pQ× pQ covariance matrix R~u is given by

R~u = diag(Ru1 ,Ru2 , · · · ,RuQ), (17)

with Ruq = E
{
uq[n]u

T
q [n]

}
= diag(0, · · · , 0, ruqq[0]). We note

from (16) and (17) that P[n|n − 1] increases with ruqq[0]. Since a
higher value of ruqq[0] results in lower predictability of sq[n], this
implies that a larger P[n|n− 1] as expected. The Kalman filter gain
is then computed as

K[n] = P[n|n− 1]HT
[
HP[n|n− 1]HT + Rv

]−1

(18)

where, similar to [3, 6] and according to (1) for the noiseless condi-
tion, the observation noise covariance Rv = 0. However, in order
to regularize the inverse operation, we have used Rv = δI where
δ = 0.01ruqq[0] with ruqq[0] being the average value of ruqq[0] over q
and I is the identity matrix. The updated state estimate ~s[n] is then
calculated as

~s[n] = ~s[n|n− 1] + K[n][x[n]−H~s[n|n− 1]] (19)

with the new state estimate error covariance being

P[n] = (I−K[n]H)P[n|n− 1]. (20)

Finally, after convergence, sq[n] can be extracted from ~s[n] using
(11).

The Kalman filter requires initialization and in this work we
have used ~s[0] = 0 and P[0] = I. When the source signals are
short-term stationary, x[n] can be divided into frames, and the pro-
posed algorithm can then operate on each of the frames in a simi-
lar way. Figure 2 shows the schematic flow of the proposed two-
stage sparseness-based AR-Kalman (SPARK) algorithm. Note that
the proposed approach of solving the UBSS problem is significantly
different from conventional sparseness-based algorithms. The UBSS
problem based on sparsity is indeed a set of determined and indepen-
dent problems at each time instant or TF point. On the other hand,
the proposed method assumes that the successive samples of s[n]
are correlated and exploits this inter-sample correlation to convert
the UBSS problem into a determined problem.

Stage 1 Stage 2

Conventional
Sparseness-based

algorithms

LPC Kalman
Filter

x[n]
s̃[n]

aq,k
ruqq[0]

A

ŝ[n]

Fig. 2. Schematic flow of the SPARK algorithm.

4. SIMULATION RESULTS

To evaluate the performance of the proposed SPARK algorithm,
simulations are conducted using speech utterances from the TIMIT
database with a sampling frequency of 16 kHz. The performance
of the proposed algorithm is compared with the sparseness-based
algorithms including the disjoint algorithm [8], MLN [13] and the
subspace-based nondisjoint algorithm [6]. The proposed algorithm
employing disjoint (DSJ), MLN and nondisjoint (NDSJ) in the first
stage are named as SPARK-DSJ, SPARK-MLN and SPARK-NDSJ,
respectively. In this work, the separation performance is quantified
in terms of SIR, source-to-distortion ratio (SDR), source-to-artifacts
ratio (SAR) and normalized mean-square error (NMSE). The first
three performance measures are computed according to [14] which
first decomposes the qth source estimate ŝq[n] as

ŝq[n] = stargetq [n] + einterfq [n] + eartifq [n], (21)

where stargetq [n] is the portion attributed to sq[n], einterfq [n] is the
interference caused by other sources and eartifq [n] is the artifacts,
such as musical noise, introduced by the separation algorithm. The
SIR, SDR and SAR for source q are then defined as

SIRq = 10 log10

∑
n s

2
targetq

[n]∑
n e

2
interfq

[n]
, (22)

SDRq = 10 log10

∑
n s

2
targetq

[n]∑
n

(
einterfq [n] + eartifq [n]

)2 , (23)

SARq = 10 log10

∑
n

(
stargetq [n] + einterfq [n]

)2∑
n e

2
artifq

[n]
. (24)

All the above measures can be computed using the BSS-EVAL Tool-
box [26]. The NMSE in dB for the qth source is defined as

NMSEq = 10 log10

(∑
n(ŝq[n]− sq[n])

2∑
n s

2
q[n]

)
. (25)

In this work, A is assumed to be known and hence NMSE will not
suffer from the scaling ambiguity. Figure 3 illustrates the separa-
tion result using the nondisjoint algorithm [6] and SPARK-NDSJ for
M = 3 and Q = 5. The speech source signals of 2 s duration are
from the TIMIT database and we have used a randomly generated

A =

 −0.8087 −0.2021 0.8590 −0.3528 0.1647
0.3784 0.3857 −0.5118 0.9355 −0.9861
−0.4504 0.9002 0.0104 −0.0204 −0.0232

 .
From Fig. 3 it can be seen that the SPARK-NDSJ algorithm enhances
the harmonic structure of all the separated signals and the listening
quality is expected to be improved. We next generate simulation
results using five sources (Q = 5) and three sensors (M = 3) as
before. For each trial, the five speech utterances, each of duration
2 s, are randomly selected from a set of 16 speech utterances from
the TIMIT database. Matrix A is generated randomly with each
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Fig. 3. Spectrogram of a separation example: (a) Clean speech signals, (b) mixtures (on the right-hand side), (c) separation results by
nondisjoint algorithm [6], (d) Separation results by SPARK-NDSJ for p = 4.
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Fig. 4. Separation results on speech signals with changing p.

element having a uniform distribution within [−1, 1]. Figure 4 shows
the average separation performance over 100 simulation trials for
1 ≤ p ≤ 12. It is clear from the figure that, by incorporating an
additional stage to the conventional sparseness-based algorithms, the
overall separation performance is significantly improved. Out of the
three algorithms used for comparison, the disjoint algorithm showed
a poor performance compared to other algorithms. This could be
due to its stringent assumption that there is only one active source
in each TF point. For p = 10, SPARK-MLN outperforms MLN
by approximately 10, 5.5, 3.5 and 4.5 dB in terms of SIR, SDR,
SAR and NMSE, respectively whereas SPARK-DSJ outperforms the
disjoint algorithm by 9, 8.5, 5.5 and 7.5 dB in terms of SIR, SDR,
SAR and NMSE, respectively. For the same AR order, SPARK-
NDSJ outperforms the nondisjoint algorithm by approximately 1, 5,
5 and 5 dB in terms of SIR, SDR, SAR and NMSE, respectively.

Figure 5 shows the average separation performance of 100 trials
against different M × Q configurations for p = 4. It can be seen
that all the algorithms show the same expected trend, i.e., for a fixed
value of M , the separation performance reduces with increasing Q.
For M = 4 and Q = 5, SPARK-MLN outperforms MLN by ap-
proximately 12, 5, 2.5 and 4.5 dB in terms of SIR, SDR, SAR and
NMSE, respectively whereas SPARK-DSJ outperforms the disjoint
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Fig. 5. Separation results on speech signals with different M ×Q.

algorithm by approximately 18, 15, 12 and 15 dB in terms of SIR,
SDR, SAR and NMSE, respectively. For the same configuration,
SPARK-NDSJ outperforms the nondisjoint algorithm by approxi-
mately 8, 8 and 9 dB in terms of SDR, SAR and NMSE, respectively
while the two methods have similar SIR performance.

5. CONCLUSIONS

We proposed a two-stage approach for source separation by exploit-
ing the sparseness and temporal structure of the source signals in
UBSS. In the first stage, the sources are partially separated using the
conventional sparseness-based algorithms available in literature and
the AR coefficients of the source signals are estimated. We have
shown that the conventional methods of AR coefficient estimation
used for determined BSS or speech enhancement applications can-
not be employed directly for UBSS. In the second stage of the al-
gorithm, the AR model obtained from the first stage are combined
with the mixing equation to form a state-space model which is then
solved by Kalman filter to obtain the refined source signals estimate.
Simulations on speech utterances showed that the proposed SPARK
algorithm achieves significant separation performance improvement
compared with conventional sparseness-based UBSS algorithms.
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