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ABSTRACT

The sound-source separation and localization (SSL) problems
are addressed within a unified formulation. Firstly, a map-
ping between white-noise source locations and binaural cues
is estimated. Secondly, SSL is solved via Bayesian inversion
of this mapping in the presence of multiple sparse-spectrum
emitters (such as speech), noise and reverberations. We pro-
pose a variational EM algorithm which is described in detail
together with initialization and convergence issues. Extensive
real-data experiments show that the method outperforms the
state-of-the-art both in separation and localization (azimuth
and elevation).

1. INTRODUCTION

In this paper we address the problem of sound-source sepa-
ration and localization (SSL) using two microphones plugged
into the ears of a dummy head. Recently it was suggested that
the ILD (interaural level difference) spectrogram carries in-
formation about the relationship between the binaural obser-
vation space and the two-dimensional (2D) localization space
(azimuth and elevation) and that the latter can be retrieved
via an unsupervised manifold learning method [1, 2]. Within
this framework, the general SSL problem is more challeng-
ing for several reasons. Firstly, the mapping from a sound-
source location to an ILD observation is unknown and non-
linear due to the head-related transfer function (HRTF) which
cannot be easily modeled. Secondly, auditory data are cor-
rupted by noise and reverberations. Thirdly, an ILD frequency
value is relevant only if the source is actually emitting at that
frequency: Natural sounds such as speech are known to be
extremely sparse, with often 80% of the frequencies actually
missing at a given time. Finally, when several sources emit
simultaneously, the assignment of a time-frequency point of
the ILD spectrogram to one of the sources is not known.

Binaural-based SSL methods often rely on the assumption
that a single source is active at each time-frequency point [3].
Hence, a number of methods combine time-frequency mask-
ing with localization-based clustering [3, 4, 5, 6]. Binaural-
based localization requires to map interaural cues to source
positions. Most existing approaches approximate this map-
ping based on simplifying assumptions, such as direct-path
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source-to-microphone propagation [3], a sine interpolation of
ILD data from a human HRTF dataset [7], or a spiral ear
model [8]. These approaches have the disadvantage of re-
quiring extra parameters, e.g., the distance between the mi-
crophones, the head dimensions, or an ear model, and quite
often they are not valid in real world conditions. We note that
the vast majority of current SSL approaches mainly focus on
a rough estimation of the azimuth, or one-dimensional (1D)
localization [9, 5, 10, 7], and that very few perform 2D local-
ization [8]. Alternatively, some approaches [6, 11, 12] bypass
the explicit mapping model and perform 2D localization us-
ing an exhaustive search in an HRTF look-up table. However,
this process is unstable and hardly scalable in practice as the
number of required associations yields too prohibitive mem-
ory and computational costs.

Recently, we proposed a generative probabilistic frame-
work for characterizing the mapping from the space of
sound-source locations to the space of binaural cues. In-
deed, the computational experiments reported in [1, 2] sug-
gest the existence of a locally-linear bijection from the space
of source locations to the space of binaural cues, and that
the high-dimensional space spanned by the latter forms a
low-dimensional manifold embedded in the former (source
locations). In practice, the source-location-to-binaural-cue
mapping can be approximated by a probabilistic piecewise
affine mapping (PPAM) model whose parameters are learned
via an EM procedure. This learning stage may be viewed
as a system calibration task. Then, accurate 2D localization
of a single sound source may be inferred from the inverse
posterior distribution of the PPAM model [2].

This paper generalizes single-source localization [2] to
SSL, e.g., the perceived binaural signals are generated from
multiple sources with unknown azimuth and elevation. As
in [2] the PPAM model is inferred from a training data set
of input-output variable pairs, where the input is the known
2D location of a white-noise emitter and the output is the per-
ceived ILD spectrogram. The proposed runtime algorithm es-
timates separation and localization in the presence of multiple
sparse-spectrum sounds. The problem will be viewed as the
one of inverting PPAM where the observed signals, generated
from multiple latent variables, are both mixed and corrupted
by noise. We show that this problem can be cast into a vari-
ational EM framework [13]. We propose a factorization of
the model’s posterior probability that decomposes the E-step
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into two localization and separation sub-steps. The algorithm
yields a fully Bayesian estimation of the 2D locations and
time-frequency masks of all the sources.

2. PROBABILISTIC PIECEWISE AFFINE MAPPING

This section briefly summarizes the PPAM model presented
in detail in [2]. Let X ⊂ RL be the space of sound-source po-
sitions and Y ⊂ RD be the ILD space. The observed ILDs are
denoted by Y = {Yt}Tt=1 ∈ Y , where Yt = [Y1t . . . YDt]> is
a vector of frequency-dependent values, the source positions
are denoted by X = {Xm}Mm=1 ∈ RL, and the source as-
signment variables are denoted by W = {Wdt}D,T

d=1,t=1, i.e.,
Wdt = m means that Ydt is generated from source m.

The PPAM model parameters are estimated from a train-
ing data-set of known input-output pairs {(xn,yn)}Nn=1 ⊂
X × Y . We thus have T = M = N and W variables
are known. Assuming that Y is an L−dimensional mani-
fold embedded in RD, a mapping g : X → g(X ) = Y
is estimated using this data-set. The local linearity of man-
ifolds suggests that each yn is the image of a source location
xn ∈ Rk by an affine transformation tk plus an error term,
where {Rk}Kk=1 is a partitioning of X . Assuming that there
are K such affine transformations tk, one for each regionRk,
a piecewise-affine approximation of g can be recovered from
the training data-set: yn =

∑K
k=1I{Zn=k}(Akxn +bk)+en

where Zn ∈ {1 . . .K} is associated with (xn,yn) such that
Zn = k if yn is the image of xn ∈ Rk by tk. Each tk is
defined by a matrix Ak and a vector bk while en captures
the reconstruction error. Assuming that the en’s are inde-
pendent of Yn, Xn and Zn, and that they are i.i.d. realiza-
tions of a centered Gaussian variable with diagonal covari-
ance Σ = diag(σ2

1 ...σ
2
D), we obtain: p(yn|Xn = xn, Zn =

k;θ) = N (yn;Akxn +bk,Σ) where θ designates the model
parameters. To make the transformations tk local we define a
Gaussian mixture prior on (Xn, Zn), i.e., p(Xn = xn|Zn =
k;θ) = N (xn; ck,Γk) and p(Zn = k;θ) = πk. The closed-
form EM algorithm proposed in [2] maximizes log p(x,y;θ)
with respect to θ =

{
{Γk, ck,Ak, bk, }Kk=1,Σ

}
.

3. SOUND SEPARATION AND LOCALIZATION

The SSL problem can now be formulated as a piecewise
affine inversion problem, where observed signals generated
from multiple sources (modeled as latent variables) are both
mixed and corrupted by noise. We propose to use a varia-
tional expectation-maximization (VEM) framework [13] to
deal with the missing data. In more detail, given the mapping
parameters estimated with the PPAM algorithm applied to the
training data set, we are now addressing the problem of sepa-
rating and localizing M sound sources. The VEM algorithm
described below will be referred to as variational EM sound
separation and localization (VESSL). Typical examples of
the algorithm’s inputs and outputs are shown in Fig. 1.

The observed data correspond to a time series of T
noisy ILD cues Y = {Yt}Tt=1 while all the other vari-
ables, namely the source assigments W ∈ W , the source
positions X ∈ X , and the transformation assignments
Z ∈ Z are unknown. Typically the number of simultane-
ously emitting sources M is much smaller than T and D,
and several observed time-frequency points Ydt can be as-
signed to the same source. To account for an unknown W ,
the observation model is reformulated as p(yt |wt,x, z) =∏

d p(ydt |wdt,xwdt
, zwdt

) where p(ydt |Wdt = m,Xm =
xm, Zm = k) = N (ydt; at

dkxm + bdk, σ
2
d). We assume

that the different source positions are independent, yielding
p(x, z) =

∏M
m=1p(xm, zm). Source assignments are also

assumed to be independent over both time (t) and frequency
(d), so that p(w) =

∏
d,t p(wdt) with p(Wdt = m) = λdm,

where λdm are positive numbers representing the relative
presence of each source in each frequency channel (sources’
weights), so that

∑M
m=1 λdm = 1 for all d. We will write

λ = {λdm}D,M
d=1,m=1. The complete-model parameter set

ψ ∈ Ψ is ψ = {{Γk, ck,Ak, bk}Kk=1,Σ,λ}. Notice that
among these parameters, the values of {Γk, ck,Ak, bk}Kk=1

have been estimated during the training stage using PPAM.
Therefore, only the parameters {Σ,λ} need to be estimated.
Σ is re-estimated to account for possibly higher noise levels
in the mixed observed signals compared to training.

We denote with Eq

[
.
]

the expectation with respect to
a probability distribution q. Denoting current parameter
values by ψ(i), the proposed VEM algorithm provides, at
each iteration (i), an approximation q(i)(w,x, z) of the
posterior probability p(w,x, z |y;ψ(i)) that factorizes as
q(i)(w,x, z) = q

(i)
W (w) q(i)X,Z(x, z) where q(i)W and q(i)X,Z are

probability distributions onW and X ×Z respectively. Such
a factorisation may seem drastic but its main beneficial effect
is to replace stochastic dependencies between latent variables
with deterministic dependencies between relevant moments
of the two sets of variables. It follows that the E-step becomes
an approximate E-step that can be further decomposed into
two sub-steps whose goal is to update qX,Z and qW in turn.
Closed-form expressions for these sub-steps at iteration (i),
extension to missing observations, initialization strategies,
and maximum a posteriori (MAP) estimations are detailed
below.
E-XZ: q(i)X,Z(x, z) ∝ exp E

q
(i−1)
W

[
log p(x, z |y,W ;ψ(i))

]
.

It follows from standard algebra that q(i)X,Z(x, z) =
∏M

m=1

q
(i)
Xm,Zm

(xm, zm) where q(i)Xm,Zm
(x, k) = α

(i)
kmN (x; µ(i)

km,

S
(i)
km) and µ(i)

km,S
(i)
km, α

(i)
km are given in (1), (2). One can see

this as the localization step, since it estimates a mixture of
Gaussians over the latent space X for each source.
E-W: q(i)W (w) ∝ exp E

q
(i)
X,Z

[
log p(w |y,X,Z;ψ(i)

]
. It

comes that q(i)W (w) =
∏

d,t q
(i)
Wdt

(wdt) where q(i)Wdt
is given in

(3). This can be seen as the separation step, as it provides the
assignment probability of each observation to the sources.
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Fig. 1. (a) Input ILD spectrogram. (b,c) Output log-density of each source position as determined by q
(∞)
X,Z . Ground-truth source positions

are noted with a black dot, and the peak of the log-density with a white circle. (d,e) Output source assignment probabilities q
(∞)
W . (f,g) Ground

truth binary masks. Red color denotes high values, blue color low values, and grey colors missing observations.

µ
(i)
km = S

(i)
km

(
Γ−1

k ck +
∑

d,t σ
−2
d q

(i−1)
Wdt

(m)(ydt − bdk)adk

)
, S

(i)
km =

(
Γ−1

k +
∑

d,t σ
−2
d q

(i−1)
Wdt

(m)adka
>
dk

)−1

, (1)

α
(i)
km =

πkα̃
(i)
km∑K

l=1 πlα̃
(i)
lm

, α̃
(i)
km =

exp(−1
2 (µ(i)

km − ck)tΓ−1
k (µ(i)

km − ck))

|S(i)−1
km Γk|

1
2

∏
d,t

exp
(−q(i)Wdt

(m)(ydt − at
dkµ

(i)
km − bdk)2

2σ2
d

)
(2)

q
(i)
Wdt

(m) =
λ

(i)
dmβ

(i)
dtm∑M

l=1 λ
(i)
dl β

(i)
dtl

, β
(i)
dtm =

K∏
k=1

exp

{
−
α

(i)
km

2σ2
d

(
tr (S(i)

kmadka
>
dk) + (ydt − at

dkµ
(i)
km − bdk)2

)}
, (3)

λ
(i)
dm =

1
T

T∑
t=1

q
(i)
Wdt

(m), σ2(i)
d =

∑T
t=1

∑M
m=1

∑K
k=1 q

(i)
Wdt

(m) α(i)
km (tr (S(i)

kmadka
>
dk) + (ydt − at

dkµ
(i)
km − bdk)2)∑T

t=1

∑M
m=1

∑K
k=1 q

(i)
Wdt

(m) α(i)
km

(4)

M: ψ(i+1) = arg maxψ E
q
(i)
W q

(i)
X,Z

[
log p(y,W ,X,Z ; ψ)

]
.

This corresponds to the update of sources’ weights λ(i) and
ILD variances Σ(i) = diag(σ2(i)

1 ...σ
2(i)
D ), as given in (4).

Missing frequencies: An important challenge in real-world
sound source localization is that natural sounds such as
speech have a sparse spectrum, and hence generate ILD
spectrograms with only a few frequency-time points. Our
probabilistic formulation straightforwardly generalizes to
such missing observations. In (1) and (2) q(i)Wdt

(m) is set to 0
for all m if the ILD ydt is missing, i.e. the recorded acoustic
level is below a given threshold at this point.
Initialization strategies: Extensive experiments have shown
that the VEM objective function, called the variational free
energy, had a large number of local maxima using real world
sound mixtures. This may be due to the combinatorial sizes of
the set of all possible binary masksW and the set of all pos-
sible affine transformation assignments Z . Indeed, the proce-
dure has shown to be more sensitive to initialization and to get
trapped in suboptimal solutions more often as the size of the

spectrogram and the number of transformation K increased.
On the other hand, too few local affine transformations K
make the mapping very imprecise. We thus developed a novel
efficient way to deal with the well established local maxima
problem, referred to as multi-scale initialization. The idea is
to train PPAM at different scales, i.e., with a different num-
ber of transformation K each time, yielding to different sets
of trained parameters θ̃K where, e.g., K = 1, 2, 4, 8 . . . , 64.
When proceeding to the inverse mapping, we first run the
VEM algorithm from a random initialization using θ̃1. We
then use the obtained masks and positions to initialize a new
VEM algorithm using θ̃2, then θ̃4, and so forth until the de-
sired value forK. To further improve the convergence of each
sub-scale algorithm an additional constraint was added, re-
ferred to as progressive masking. During the first iteration, the
mask of each source is constrained such that all the frequency
bins of each time frame are assigned to the same source. This
is done by adding a product over t in qWdt

(m) (3). Similarly
to what is done in [14], this constraint is then progressively

78



method 1 source 2 sources 3 sources
used Az El Az El SDR SIR Az El SDR SIR

VESSL T1 2.1±2.1 1.1±1.2 4.7±11 2.9±9.9 3.8±1.7 6.1±1.7 17 ±34 8.7±19 1.7±1.5 2.1±1.5
VESSL T2 3.5±3.3 2.4±2.6 8.2±16 4.7±11 3.3±1.6 5.2±1.6 19 ±35 9.1±18 1.5±1.5 1.8±1.5
MESSL-G 5.6±9.4 14±21 2.3±1.6 6.0±4.3 18±28 1.3±1.2 2.2±4.4

mixture 0.0±2.5 0.2±2.5 -3.2±2.3 -3.0±2.3
oracle 12± 1.6 21 ±2.0 11± 1.7 20 ±2.1

Table 1. Comparing the average and standard deviation (Avg±Std) of azimuth (Az) and elevation (El) angular errors in degrees, as well as
Signal to Distortion Ratio (SDR) and Signal to Inteferer Ratio (SIR) for 600 test sounds with 1 to 3 sources using different methods.

released at each iteration by dividing time frames in 2,4,8...
frequency blocks until the total number of frequency bins is
reached. These two strategies dramatically increased both the
algorithm’s performance and speed1.
Algorithm termination: MAP estimates for missing data
can be easily obtained at convergence of the algorithm by
maximizing respectively the final q(∞)

X,Z(x, z) and q
(∞)
W (w)

probability distributions. We have (XMAP
m , ZMAP

m ) =
(µ(∞)

k̂m
, k̂) where k̂ = arg max

k=1:K
α

(∞)
km |Σ(∞)

km |−1/2 and

WMAP
dt = arg max

m=1:M
q
(∞)
Wdt

(m). Note that as shown in

Fig. 1, the algorithm not only provides MAP estimates, but
also complete posterior distributions over both the 2D space
of sound source positions and the space of binary masks.

4. EXPERIMENTS

The proposed algorithm (VESSL) was tested using the
CAMIL dataset2 [15] which consists of binaural record-
ings made in the presence of sound sources emitting white
noise and random utterances from the TIMIT speech dataset.
Recordings are all made in a reverberant room and are as-
sociated to the ground truth emitter’s direction in the mi-
crophones’ frame, i.e., azimuth and elevation. N = 9, 600
directions are available in the dataset, corresponding to 160
azimuths in the range [−160◦, 160◦], 60 elevations in the
range [−60◦, 60◦] and an average angular distance between
points (density) of 2◦. ILD spectrograms were obtained from
the log-ratio between the left and right power spectrograms.
Spectrograms were computed using short-time Fourier trans-
form with a 64ms time-window and 8ms overlap, yielding
T = 126 D-dimensional ILD vectors per second, where
D = 512 corresponds to the number of frequencies in the
range 0-8000Hz. The mapping parameters θ were trained
with PPAM using mean ILD vectors, i.e, the temporal mean
of the ILD spectrograms, associated to the ground truth (az-
imuth and elevation) of the emitter. The training was done on
recordings corresponding to white-noise emitters such that
all the frequencies are present. In order to test the algorithm,
we used both single source recordings and mixtures of 2 to 3
sources obtained by summing utterances emitted from differ-

1About 15× real time speed for M = 2, K = 64 and MATLAB code.
2http://perception.inrialpes.fr/ Deleforge/CAMIL Dataset/

ent positions, so that at least two sources were emitting at the
same time in 60% of the test sounds.

We evaluated VESSL using two sets of PPAM parame-
ters. The first parameters were estimated from the training
set T1 with N1 = 9, 600 positions, density δ = 2◦ and us-
ing K = 128. The second parameters were estimated from
the decimated set T2 with N2 = 1, 530 positions (density
δ = 5◦) and using K = 64. Localization and separation
results are compared to the state-of-the-art EM-based sound
source separation and localization algorithm MESSL [14] in
table 1. The version MESSL-G used includes a garbage com-
ponent and ILD priors to better account for reverberations and
is reported to outperform four methods in reverberant condi-
tions in terms of separation [3, 16, 4, 17]. Note that this al-
gorithm, as well as the vast majority of existing source local-
ization methods [3, 4, 5, 7, 9, 10], do not make use a training
set 2D source locations and hence they only provide time dif-
ference of arrival for each source, i.e., frontal azimuth and
no elevation. For the comparison to be fair, results given for
MESSL correspond to test with only frontal sources (azimuth
in [−90◦, 90◦]). We evaluated separation performance using
the standard metrics Signal to Distortion Ratio (SDR) and
Signal to Interferer Ratio (SIR) introduced in [18]. SDR and
SIR results of both methods were also compared to those ob-
tained with the ground truth binary masks or oracle masks [3]
and to those of the original mixture. Oracle masks provide an
upper bound that cannot be reached in practice as it requires
to know the original signals. Conversely, the mixture scores
provide a lower bound, as no mask is applied.

5. CONCLUSION AND FUTURE WORK

With a similar computational time, VESSL outperforms state-
of-the art separation scores from MESSL and performs ac-
curate 2D localization in the challenging case of noisy real-
world recordings of multiple sparse sound sources emitting
from a wide range of directions, using spectral ILD only. This
pushes VESSL forward, as a promising method for robustly
addressing SSL using a training stage (calibration). Future
work will include adding spectral interaural phase differences
in the model, testing the robustness to changes in the rever-
berating properties of the room where the training has been
performed, or using audiovisual training procedures [19, 20].
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