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ABSTRACT

This paper concerns a new method of source separation that
uses a spatial cue given by a user or from accompanying im-
ages to extract a target sound. The algorithm is based on non-
negative tensor factorization (NTF), which decomposes mul-
tichannel spectrograms into three matrices. The components
of one of the three matrices represent spatial information and
are associated with the spatial cue, thus indicating which bins
of the spectrogram should be given preference. When a spa-
tial cue is available, this method has a great advantage over
conventional PARAFAC-NTF in terms of both computational
costs and separation quality, as measured by evaluation met-
rics such as SDR, SIR and SAR.

Index Terms— Audio source separation, Signal recon-
struction, Sparse representation, Nonnegative Tensor Factor-
ization

1. INTRODUCTION

Source separation is a key technology that has enabled ma-
jor breakthroughs in various fields of audio signal processing,
such as automatic speech recognition and music transcription.
It can generally be enhanced by incorporating prior knowl-
edge, which is mainly provided as a property of the target
source. For example, the incorporation of a spatial cue has
the potential to improve applications such as Sound Zoom by
enabling the extraction of target sounds that might be located
in a certain direction. Below, we discuss source separation
with a spatial cue, beginning with a review of previous stud-
ies.

The techniques for solving the source separation problem
can be classified into two groups: position-given source sepa-
ration (PGSS) e.g., beam forming [1, 2] and blind source sep-
aration (BSS). In the 1990s, a new BSS technique called in-
dependent component analysis (ICA) was developed that au-
tomatically finds the directions of the sources in a mixture,
thereby enabling the extraction of a target source [3, 4]. The
main drawback is that the algorithm can extract at most N
sources for an N -channel signal. Another approach, called

1 This research has been funded by the European Union Seventh
Framework Programme (FP7/2007-2013) under grant agreement no 287674
(3DTVS).

DUET, which is capable of de-mixing from 2ch-stereo sig-
nals, requires the sources to be sparse with respect to the spec-
trogram bins [5, 6].

The early 2000s saw the development of a new BSS tech-
nique called non-negative matrix factorization (NMF) [7, 8],
which does not rely on directional information. It is based
on the idea that a mixture is a composite of a number of
object basis elements, each of which represents an underly-
ing characteristic of the sources. Estimation is carried out by
simple matrix factorization, with all the elements being non-
negative. NMF also eliminates another problem with ICA,
namely, that the number of microphones should be greater
than or equal to the number of target sources. However, NMF
requires the clustering of basis elements after factorization to
classify them so that the target sound can be resynthesized.
A large number of related techniques have been developed so
far [9, 10, 11].

Nevertheless, it is unlikely that NMF can incorporate a
spatial cue due to its algorithm framework. Since NMF does
not produce any spatial information during the separation pro-
cess, it is difficult to associate a spatial cue. Sawada et al. pro-
posed a new NMF method that incorporates a spatial matrix;
but they did not consider the use of a spatial cue [12].

As a generalized NMF technique, non-negative tensor fac-
torization (NTF) extends the NMF idea to tensors. An n-
way tensor is a generalization of the mathematical concepts
of scalar, vector, and matrix (e.g., a two-way tensor is a ma-
trix). Specifically, a three-way tensor, which can be regarded
as a collection of multichannel spectrograms, is now being
investigated for use in NTF [13, 14, 15]. Extension to the
third dimension provides another matrix that describes the
energy distribution of each base component on every chan-
nel, which can also be regarded as spatial information. This
technique enables the NMF approach to be adapted to PGSS,
which, as a result, can easily accept a spatial cue. In addition,
since a spatial cue indicates which bins of the tensor spectro-
gram are important, it is possible to improve the quality of
an approximation to the specific bins of the tensor by giving
more weight to bins where the target is likely to exist and less
weight to the others. To our knowledge, no one has yet used
NMF for PGSS. This paper describes a new NTF method that
incorporates a spatial cue. The results show that this method
is advantageous in terms of separation quality and computa-
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tional costs over conventional PARAFAC-NTF [16]. NTF is
also capable of separating two sounds coming from the same
direction, which is a great improvement over previous source
separation methods. However, this paper focuses only on the
incorporation of a spatial cue. Adaptation to a moving target
is also outside the scope of this study.

This paper is organized as follows: Section 2 briefly ex-
plains NTF. Section 3 describes a possible incorporation of
spatial cue into NTF. Section 4 shows evaluation results on
quality and computational costs. Finally, Section 5 presents
some concluding remarks.

2. NON-NEGATIVE TENSOR FACTORIZATION

A multichannel audio signal that has been transformed into a
set of spectrograms (one for each channel) will be regarded as
a three-way tensor V and approximated by V̂. V̂ is created as
a superposition of P feature tensors, each produced by means
of an outer product of three vectors qp, wp, and hp, respec-
tively representing the channel, frequency, and time factors of
the feature tensor. To adapt the NTF representation V̂ to the
target tensor spectrogram V the following optimisation prob-
lem is solved:

min
Q,W,H

∑
j,k,l

gjkldβ(vjkl|v̂jkl) + α(H) s.t. Q,W,H ≥ 0 , (1)

with
v̂jkl =

∑
p

qjpwkphlp .

Here the matrices Q, W, and H are assembled from the vec-
tors qp, wp, and hp, having elements qjp, wkp, and hlp. The
elements of the tensor V̂ are denoted as vjkl. α(H) rep-
resents additional constraints on matrix H, which are taken
into account during minimisation of the cost function. The
β−divergence, dβ , is suitable for NTF, allowing the separa-
tion quality to be changed, subject to the parameter β [17].
When β equals to 2, 1, or 0, the NTFs are called EUC-NTF,
KL-NTF, or IS-NTF, respectively. gjkl denotes one of the
bins of the weighting tensor, G, in bin-wise β−divergence. It
allows controlling the impact of the error observed in the dif-
ferent elements of V. For standard PARAFAC-NTF, gjkl = 1
for all the bins.

The update rules for training the three matrices are derived
from the derivatives of the cost function:

Q← Q ·

(
〈G ·V · V̂·(β−2),W ◦H〉{2,3},{1,2}
〈G · V̂·(β−1),W ◦H〉{2,3},{1,2}

)·γ
, (2)

W←W ·

(
〈G ·V · V̂·(β−2),Q ◦H〉{1,3},{1,2}
〈G · V̂·(β−1),Q ◦H〉{1,3},{1,2}

)·γ
, (3)

p
q

Fig. 1. Two different solutions incorporating NTF (see sec-
tion 3).

H← H·

(
〈G ·V · V̂·(β−2),Q ◦W〉{1,2},{1,2} +∇−Hα(H)
〈G · V̂·(β−1),Q ◦W〉{1,2},{1,2} +∇+

Hα(H)

)·γ
,

(4)
where ∇Hα(H) = ∇+

Hα(H)−∇−Hα(H), both · and / denote
element-wise calculations, A ◦ B denotes J ×K × P tensor
with elements ajpbkp when A and B are J × P and K × P
[18], and 〈A,B〉{C},{D} denotes a contracted product [16].
Setting parameter γ to the proper value guarantees that the
cost function decreases monotonically when gjkl = 1 for all
the bins and the constraints are zero [19].

3. INCORPORATION OF SPATIAL CUES

We devised two ways of incorporating a spatial cue. Fig.1
shows a 2D representation of a channel matrix, Q, for 2ch-
stereo signals. The small arrows represent the basis elements
of the channel matrix. Their positions depend on the val-
ues for each channel: for example, the basis element qp =
[0.5, 0.5]T means that the source is coming from the center,
and the basis element qp = [0.9, 0.1]T means that the source
is closer to the left channel.

←−
Qp = 2 tan−1

(
q1,p
q0,p

)
, (5)

where
←−
Q denotes the angles of the arrows in radians clock-

wise from the horizontal axis in Fig.1. The big arrow indi-
cates a spatial cue that is specified independently from out-
side. It is totally independent of the positions of the small
arrows at this moment, and it is given in the same format as
the elements of Q, (e.g., sc = [0.4, 0.6]T ).

Idea 1 (Fig.1, left) applies standard PARAFAC-NTF to
audio signals. Factorization produces the channel matrix, Q,
the elements of which will be linked to the spatial cue at the
end of the process. This may, however, pose a problem when
the spatial cue is far from the basis element candidates (Fig.1,
left). Interpolation between the two groups (three arrows on
left and three arrows on right) in another space might not be
helpful in creating sound in the direction of the spatial cue.
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However, Idea 1 yields good performance when the spatial
cue and the basis element candidates are sufficiently close to
each other.

In Idea 2 (Fig.1, right), the basis elements of the chan-
nel matrix, Q, are evenly spaced before the start of the NTF
process. The directions remain fixed throughout the process
while matrix W and matrix H are trained by means of NTF
update rules. The basis element candidates are selected to be
the ones closest to the spatial cue. Assuming that the basis
elements cover the whole sound field, this technique yields a
more robust approximation for any spatial cue. Two things
make Idea 2 worth focusing on: the computational efficiency,
since the channel matrix, Q, does not have to be updated; and
the potential improvement in quality due to the prior knowl-
edge provided by the spatial cue. We call Idea 1 PARAFAC-
NTF (p-NTF) and Idea 2 fixed-Q NTF (f-NTF). The next sec-
tion explains a method based on f-NTF.

4. PROPOSED METHOD

4.1. Initialization

We selected IS-NTF (NTF using Itakura-Saito divergence) for
our initial experiments and used noise-free input signals, such
as commercial music. In spite of the better quality it provides,
the main concern with IS-NTF is instability arising from the
initialization of matrices [20]. IS-NTF is more prone to lo-
cal minima than other types of NTF because the formula has
convex and concave parts. The simplest solution to this prob-
lem might be to perform a number of training runs and then
select the best results from among them. Another approach
to mitigating this effect is tempering NTF by changing the
type of divergence during the iterations [21]. For example,
the training could start with EUC-NTF, which is relatively ro-
bust with regard to local minima, and finish up with IS-NTF,
which produces better results. This would require that de-
velopers carefully control β, and more iterations than usual
would probably be needed. We came up with a two-part so-
lution to this problem. One part involves taking advantage
of the prior knowledge provided by the spatial cue, which is
discussed in the next section. The other part is based on the
feature similar to the idea of

←−
Q . This similar feature is easily

obtained from the equation in the case of 2ch-stereo signals.

←−
B kl = 2 tan−1

(
v1kl
v0kl

)
, (6)

where v0kl and v1kl are the spectrogram bins for the left and
right channels, respectively. This feature concerns the arrows
in Fig.1 and their relationships to each spectrogram bin. It is
possible to determine the locations of sources with respect
to the bins by searching for the peaks in the histogram of
←−
B , which represents the dominant presence of the sources.
The basis elements are preferentially allocated, based on the
histogram of

←−
B : More elements are allocated to directions

where sources are likely to exist, although some are allocated
to cover all directions. The number of directions, D, and the
range of arrows should be selected depending on the applica-
tion.

4.2. Weighting function

Since the spatial cue indicates which direction should be
given preference, and since the histogram of

←−
B indicates

which source is dominant for a given direction, it is possi-
ble to approximate the spectrogram bin associated with the
spatial cue more precisely than other bins. This is easy to
accomplish by using the proper weighting tensor, G, in the
cost function:

gjkl = exp
(
−ψ|(dsc − d)|

)
c, k, l ∈ Grp(d), (7)

where dsc is the direction index associated with the spatial
cue, d ranges from 0 toD−1, Grp is the group of spectrogram
bins obtained from the histogram of

←−
B , and ψ determines the

shape of the exponential function.

4.3. Constraints

This step takes advantage of the normalization procedure that
is often done through NTF for the purpose of concentrating
energy to single matrix. After matrices Q and W have been
normalized by their own energies, which have then been mul-
tiplied by H, the energy for each direction can be estimated
by adding all the basis elements in matrix H over time. The
estimated energy is fixed so that it can be used as a reference
to constrain the training in the initial stages of the iteration.
This should reduce the likelihood of being trapped in local
minima. Here, we again use the Itakura-Saito divergence to
measure distance. The constraint on energy in a given direc-
tion is

α(H) = µ

D−1∑
d=0

dIS

(∑
p∈Pd

|Hinip |1

∣∣∣∣∣ ∑
p∈Pd

|Hp|1

)
, (8)

s.t.Qp = Qp/|Qp|1, Wp = Wp/|Wp|1, Hp = |Qp|1|Wp|1Hp,

where | · |1 denotes the L1-norm, Hini denotes the matrix H
that was estimated in the initialization step, and Pd denotes
the set of bases allocated to the direction with the index d.
For IS-NTF, the following should hold for the derivative of
the constraint:

∇α(hp) =
µ(∑

p∈Pd
|Hp|1

)−1 − µ
∑
p∈Pd

|Hinip |1(∑
p∈Pd

|Hp|1
)−2 . (9)

We call this type of NTF a spatial-cue NTF (sc-NTF).
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Fig. 2. Dataset wdrums.
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Fig. 3. Dataset nodrums.

5. EVALUATION

BSS Eval of MATLAB was used to evaluate the above
method. It gives three standard metrics for source separa-
tion: signal-to-distortion ratio (SDR), signal-to-interference
ratio (SIR), and signal-to-artifact ratio (SAR) [22]. SDR is
a global measure of the quality of source separation that en-
compasses the two other metrics; SIR indicates how well the
target source is separated from interference; and SAR indi-
cates how well the target source retains sound quality after
separation. sc-NTF was compared with p-NTF and f-NTF.
2ch-stereo signals were obtained from the ”Signal Separation
Evaluation Campaign” Web site (SiSEC 2008 [23]). More
specifically, we used development data from the underde-
termined speech and music mixture task. These 2ch-stereo
sources contain a number of instruments placed indepen-
dently in a 2D field. The ground truth registered in a similar
format as

←−
Q , was also obtained from SiSEC 2008. It gives

the location of each instrument.
For f-NTF, after separation is conducted, the basis ele-

ments pointing in a direction close to the ground truth are se-
lected to be separated out. In contrast, p-NTF requires group-

f-NTF sc-NTF p-NTF
computational costs [s] 20.869 23.427 94.399

Table 1. Runtime test for the three different NTF.

ing after training. Our experiments on two grouping algo-
rithms k-means and k-nearest neighbor to the ground truth
showed that the latter yielded better results.

On the other hand, for sc-NTF the bases are selected be-
forehand due to the link established between the allocated ba-
sis elements and the spatial cue. Resynthesis is followed by
Wiener filtering to create the output signals used for evalua-
tion (1024-point FFT, half overlap, the number of the basis
elements P = 90). Tests were run 10 times to obtain an av-
erage, indicated by a bar, and 95% confidence, indicated by a
line on top of the bar. This test was almost exactly the same
as the one described by Févotte et al. in their 2010 paper [18].
The only difference was in the number of bases: They used
P = 9 and we used P = 90 . γ in the cost function was set
to 1. We obtained better results when ψ = 0.2 for weighting
tensor G and µ = 300 for the constraint.

Fig.2 shows test results for percussive sound (wdrums),
and Fig.3 shows results for harmonic sound (nodrums). Most
of the results show that sc-NTF outperforms both f-NTF and
p-NTF. It is important to note that these results were obtained
by sacrificing accuracy of the approximation of sources far
from the spatial cue. This can be deduced from the final value
of the cost function with respect to direction, but cannot be
discussed further due to lack of space. The 95% confidence
for both p-NTF and sc-NTF indicates that local minima were
avoided. There is a large variance only in the results for f-
NTF. For the sake of the omission of updating channel matrix
Q, the runtime test shows great advantages for sc-NTF seen
in Table.1, which was calculated with Matlab code.

6. CONCLUSION

We developed a new method of extracting a target sound from
a mixture that employs a spatial cue. Two ways of incorpo-
rating a spatial cue into a NTF framework were devised. The
one that employs a fixed channel matrix, Q, was further de-
veloped to improve the separation quality. The association of
the spatial cue with the histogram of

←−
B clarifies which spec-

trogram bins should be given preference to obtain a better ap-
proximation. An evaluation of separation quality, which was
carried out as in previous studies, demonstrated the effective-
ness of the weighting tensor, G, and the energy constraints. In
addition, the omission of the calculation of Q was a great ad-
vantage in the runtime test. In short, our algorithm combines
the computational cost of f-NTF with the separation quality of
p-NTF. Adaptation to a moving target and source separation
from the same direction will be subjects of future work.
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