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ABSTRACT

A challenging problem in multimedia recommendation is to model a
variety of relations, such as social, friend, listening, or tagging ones
in a unified framework and to exploit all these sources of informa-
tion. In this paper, music recommendation problem is expressed as a
hypergraph ranking problem, introducing group sparsity constraints.
By doing so, one can control how the different data groups (i.e., sets
of hypergraph vertices) affect the recommendation process. Exper-
iments on a dataset collected from Last.fm demonstrate that the
accuracy is significantly increased by exploiting the group structure
of the data. Preliminary results are also presented for Greek folk
music recommendation.

Index Terms— music recommendation, social media informa-
tion, hypergraph, group sparse optimization, music signal processing

1. INTRODUCTION

Recommender systems assist users to identify content, which may
be of their interest from a potentially overwhelming set of choices
[1]. Combined with the growth of the digital music market, the de-
ployment of an effective music recommendation system has become
a challenging research topic. The various music recommendation
methods developed so far, can be classified into three basic cate-
gories: collaborative-filtering ones, content-based ones, and hybrid
recommendation ones. Collaborative filtering methods are popular,
as a result of the growth of social networking [2–4]. Items are rec-
ommended by exploiting user relations, assuming that similar users
will have similar preferences. Content-based recommendation meth-
ods exploit any meta-data information of the items (i.e., the song
writer, singer, musical genre or style) [5] and acoustic features ex-
tracted from the audio content [6–9]. Due to the semantic gap be-
tween the low level acoustic features and the high level music con-
cepts, content-based methods lead to inefficient recommendations.
Hybrid methods attempt to combine content-based recommendation
with collaborative filtering techniques [10, 11].

Here, we are interested in a hybrid method treating music recom-
mendation as a hypergraph ranking problem. That is, different kinds
of objects (e.g., users, tracks, tags) are viewed as different types of
hypergraph vertices, which participate in the same hyperedge. Hy-
peredges containing such multi-type objects can model high-order
relations between the just mentioned objects. A novel recommenda-
tion method is proposed extending the framework proposed by Bu et
al. [12] in order to incorporate group sparsity constraints, enabling
thus the exploitation of the group structure of the data. A proper
optimization problem is defined and solved by employing the Lin-
earized Alternating Direction Method [13]. The F1 measure of the

proposed method at various ranking positions is demonstrated to be
higher than that of the method in [12] and collaborative filtering.

The outline of the paper is as follows. Ranking on a hypergraph
with group sparsity regularization is detailed in Section 2. In Sec-
tion 3, music recommendation on Last.fm is explained. In partic-
ular, the dataset, the calculation of the audio track similarities, the
construction of the hypergraph, and recommendation results are de-
scribed. Preliminary results for Greek folk music recommendation
are included in Section 4. Conclusions and future work directions
are summarized in Section 5.

2. GROUP SPARSE REGULARIZATION FOR RANKING
ON A HYPERGRAPH

A hypergraph G(V,E,w) is defined as a set of vertices V and hy-
peredges E, to which a weight function w : E → R is assigned [14].
Each hyperedge e ∈ E contains an arbitrary number of vertices
v ∈ V , which is defined as the hyperedge degree δ(e) = |e|, with
the set cardinality denoted as |.|. Ordinary graphs could be described
as hypergraphs with a hyperedge degree equal to 2. Similarly, the de-
gree of a vertex v can be defined as δ(v) =

∑
e∈E|v∈e w(e). Let

H ∈ R
|V |×|E| be the vertex to hyperedge incidence matrix, having

elements H(v, e) = 1 if v ∈ e and 0 otherwise. The following
diagonal matrices are defined: the vertex degree matrix Du, the hy-
peredge degree matrix De of size |V | × |V | and |E| × |E|, respec-
tively as well as the |E| × |E| matrix W containing the hyperedge
weights. The �2 norm of a vector is denoted by ‖.‖2 and I is the
identity matrix of compatible dimensions.

Let A = D
−1/2
u HWD−1

e HTD
−1/2
u and L = I − A be the

positive semi-definite hypergraph Laplacian matrix. For a real val-
ued ranking vector f ∈ R

|V |, one seeks to minimize Ω(f) = 1
2
fTLf

requiring all vertices with the same value in ranking vector f to be
strongly connected [15]. Vertices participating in many common hy-
peredges should have similar ranking values. The just mentioned op-
timization problem was extended by including the �2 regularization
norm between the ranking vector f and the query vector y ∈ R

|V |

in [12].
The vertex set V in the hypergraph is made by the concatena-

tion of sets of objects of different kind, such as users, user groups,
tracks, or tags. Let each set of objects define a group. Clearly,
each group contributes differently to the ranking procedure. Accord-
ingly, a Group Lasso regularizing term is more appropriate [16] than
the �2 norm one. The replacement of the �2 norm regularization
by the Group Lasso term is proposed here. If the hypergraph ver-
tices are grouped into S non-overlapping groups, the ranking rec-
ommendation should be optimized by assigning different weights
γs, s = 1, 2, . . . , S to each group, yielding the following objective

56978-1-4799-0356-6/13/$31.00 ©2013 IEEE ICASSP 2013



function to be minimized:

Q(f) = Ω(f) + ϑ
S∑

s=1

√
γs (f − y)TKs(f − y). (1)

In (1), ϑ is the regularizing parameter and Ks is the |V | × |V | di-
agonal matrix with elements admitting the value 1 for the vertices,
which belong to the s-th group. The recommendation problem can
now be expressed as:

f∗ = argmin
f

Q(f). (2)

Let x = f − y. By introducing the auxiliary variable z = x, (2) can
be rewritten as:

argmin
x

1

2
(x+ y)TL(x+ y) + ϑ

S∑
s=1

√
γs zTKsz

s.t. z = x. (3)

The solution of (3) can be obtained by minimizing the augmented
Lagrangian function

L(x, z,λ) = 1

2
(x+ y)TL(x+ y) + ϑ

S∑
s=1

√
γszTKsz

+λT (z− x) +
μ

2
‖z− x‖2. (4)

where λ is the vector of the Lagrange multipliers, which is updated
at each iteration and μ is a parameter regularizing the violation of the
constraint x = z. (4) can be solved by the Alternating Directions
Method [13] as shown in Algorithm 1. Solving for xt+1 in line 3

Algorithm 1 Alternating Directions Method

1: Given xt,zt and λt.
2: Set tolerance ε and initialize μ.
3: xt+1 ← argmin

x
L(xt, zt,λt)

4: zt+1 ← argmin
z
L(xt+1, z,λt)

5: if ‖z− x‖2 > ε then
6: λt+1 ← λt + μ(zt+1 − xt+1)
7: μt+1 = min(1.1μt, 106)
8: else
9: return xt+1, zt+1.

10: f = xt+1 + y
11: end if

of Algorithm 1 is a convex minimization, requiring the gradient of
L(x,z,λ) with respect to x is vanishing:

∂L
∂x

= (I−A)(x+ y)− λ+ μ(x− z) = 0 (5)

(5) yields

xt+1 = (L + μI)−1(λt + μzt − Ly). (6)

The minimization problem described in line 4 of Algorithm 1 can be
expressed as

min
z

μ

{
ϑ

μ

S∑
s=1

√
γs
√

zTKsz+
1

2
‖z− (xt+1 − 1

μ
λt)‖22

}
. (7)

For Ks a diagonal matrix of ones, the term
√
γs‖K1/2

s z‖2 can be
rewritten as:

√
γs‖K1/2

s z‖2 =

√√√√ |V |∑
j=1

γs K(s, j) z2j . (8)

It is easily seen that (7) for the jth element of z yields

1

2

(
zj − (xt+1

j − 1

μ
λt
j)
)2

+
ϑ

μ

S∑
s=1

√
γs K(s, j) |zj | (9)

which is solved by applying the soft-thresholding operator [17]

zj =
rj
|rj | max

(
0, |rj | − ϑ

μ

S∑
s=1

√
γs K(s, j)

)
(10)

where rj = xt+1
j − 1

µ
λt
j .

3. WESTERN MUSIC RECOMMENDATION ON A
HYPERGRAPH

3.1. Dataset description

A dataset was created by collecting real data from Last.fm. To
create the list of users, the 450 top artists were selected and their
top 50 user fans where concatenated in a user set. This user set
was later reduced based on the track and tag count of each user,
yielding a final set of 1389 users. To create the track set, the 500 top

Table 1. Dataset objects, notations, and counts.
Objects Notations Count
Users U 1389
Groups Gr 10
Tracks Tr 1765
Tags Ta 1711

played tracks for each user were concatenated in a list, from which
1765 unique tracks were selected based on their popularity among
the users. Finally, we collected the tagging relations of each user
and retained the 1711 most frequent unique tags. By using Porter’s
stemming algorithm [18] and calculating next the edit distance [19]
between the tag pairs, all synonyms have been removed from the
tags vocabulary (i.e., pairs, such as hardrock and hard rock or 90s
and 1990s were merged). The final size of all sets and the various
relations is described in Tables 1 and 2, respectively.

Table 2. Dataset relations between the objects.
Relations Notations Count
Listening relations R1 68774
Tagging relations R2 48566
Friendship relations R3 13890
Similarities between tracks R4 -
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3.2. Audio-track similarities

Audio content similarities are captured thanks to 20 mel frequency
cepstral coefficients (MFCCs) used to encode the timbral properties
of the music signal. They are calculated by employing frames of du-
ration 23ms with a hop size of 11.5 ms and a 42-band filter bank. A
Gaussian Mixture Model (GMM) is created for each track with 30
components trained using the Expectation-Maximization (EM) algo-
rithm as in [20]. The distances between the GMM’s are computed
by using the Earth Movers’ Distance [21], yielding the audio-track
similarities.

3.3. Hypergraph construction

The object set includes the users, the user groups, the tags, and the
tracks, forming the vertex set V = U ∪ G ∪ Ta ∪ Tr of the hy-
pergraph. The cardinality of these sets can be seen in Table 1. The
set of hyperedges is defined as in [12]. The incidence matrix of the
unified hypergraph H is shown in Table 3. Its size is 4875×146885
elements. In particular:

• E(1): The hyperedge represents a pairwise friendship rela-
tion between users. In this case its weight value is set to 1.
The incidence matrix of the hypergraph UE(1) has a size of
1389 × 13890 elements.

• E(2): The hyperedge represents a group of users. It contains
all the vertices of the corresponding users, as well as the ver-
tice corresponding to the group object. In this case its weight
value is also set to 1. The incidence matrix of the hypergraph
UE(2) −GE(2) has a size of 1399× 13890 elements.

• E(3): The hyperedge contains a user and a music track, repre-
senting a user-track listening relation. The hyperedge weight
w(e

(3)
ij ) is defined as the number of times the particular user

ui has listened to the track trj , normalized as follows to elim-
inate the bias:

w(e
(3)
ij )′ =

w(e
(3)
ij )√∑|Tr|

k=1 w(e
(3)
ik )

√∑|U|
l=1 w(e

(3)
lj )

(11)

and further scaled as w(e
(3)
ij )∗ =

w(e
(3)
ij )′

ave(w(e
(3)
ij

)′)
, where

ave(w(e
(3)′
ij )) the average of normalized weights of the

particular user ui. The incidence matrix of the hypergraph
UE(3) − TrE

(3) has a size of 3154 × 68774 elements.

• E(4): The hyperedge contains three vertices, a user, a tag
and a music track, representing a tagging relation. In this
case, its weight is set to be 1. The incidence matrix of the
hypergraph UE(4) − TaE

(4) − TrE
(4) has a size of 4865×

48566 elements.

• E(5): The hyperedge contains two vertices which represent
two music tracks, with its weight w(e

(5)
ij ) set as the similarity

between tracks tri and track trj, normalized as follows to

eliminate the bias w(e
(5)
ij )′ =

w(e
(5)
ij

)

max(w(e(5)))
.

Based on this incidence matrix H, the weight matrix W, the
vertex degree matrix Du and the hyperedge degree matrix De are
computed. The ranking vector f∗ is derived by solving (2), after
setting the values of the query vector y, the group weights γs, and
the regularization parameter ϑ. The query vector y is initialized by
setting the entries corresponding to the target user and all objects

Table 3. The structure of the hypergraph incidence matrix H and its
sub-matrices.

E(1) E(2) E(3) E(4) E(5)

U UE(1) UE(2) UE(3) UE(4) 0

G 0 GE(2) 0 0 0

Ta 0 0 0 TaE
(4) 0

Tr 0 0 TrE
(3) TrE

(4) TrE
(5)

(users, user groups, tags, and tracks), which are connected to this
user to 1. The query vector y has a length of 4875 elements. If for
example, the query user has listened to a certain track, the value of
the element of y corresponding to this track is set to 1. The group
weights γs are initially set to 1, treating all groups equally and then
are empirically adjusted in order to examine the contribution of each
group separately. The group weight values vary in the range [0, 1]
with a step of 0.1. The regularization parameter ϑ is a constant and
does not affect the ranking results.

The resulting ranking vector f∗ has a size of 4875 elements and
the same structure with the query vector. Only the values corre-
sponding to music tracks are used for music recommendation with
the top ranked tracks being recommended to the user.

3.4. Experiments

The proposed algorithm is compared to a user-based Collaborative
Filtering (CF) algorithm [22] and the Music Recommendation on
Hypergraph (MRH) algorithm [12], including listening relations
(R1), tagging relations (R2), friends relations (R3), and music sim-
ilarity relations (R4). The Recall-Precision and the F1 measure are
used as figures of merit. Recall is defined as the fraction of relevant
items that are retrieved (here, recommended), while precision is the
fraction of retrieved (here, recommended) items that are relevant.
The F1 measure is the weighted harmonic mean of precision and
recall, which measures the effectiveness of recommendation when
treating precision and recall as equally important.

A test set is defined, containing 20% of the listening relations
and the remaining 80% of the listening relations create the training
set. Before applying any recommendation method for a certain user,
all his/her relations with the tracks of the training set are removed.

A set of 100 random users is selected. In Fig. 1, the Aver-
aged Recall-Precision curves are plotted, by averaging the Recall-
Precision curves over these 100 users, for all compared methods.
The user-based CF algorithm has the worst performance, as ex-
pected, due to the high sparsity of the user and track data and the
fact that it does not exploit any acoustic similarity between the
tracks. The MRH algorithm models the high-order relations be-
tween the users, the tracks, the tags, and the acoustic similarities and
thus achieves better results than the CF. In the MRH, the problems
associated with data sparsity, like the cold start problem or the user
bias, are alleviated thanks to the additional information on acoustic
similarity, user friendship relations, and tagging relations exploited.

The proposed method, denoted as Query Group Sparse (QGS),
inherits the advantages of the MRH, but it exploits furthermore the
group structure of the hypergraph by assigning unique weights γs
to each group (users, user groups, tags, and tracks). The averaged
recall-precision curves for three different weight settings are pre-
sented in Fig. 1. The QGS-(1) curve treats all groups equally by
assigning equal weights γs to the groups. The QGS-(2) curve sets
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Fig. 1. Averaged Recall-Precision curves of 100 users for all com-
pared algorithms.

larger weights to users and tracks than user groups and tags The
weights for users, user groups, tags, and tracks are set to 0.8, 0.2,
0.2, and 0.9, respectively. The QGS-(3) curve weights more heavily
the users and user groups than the tags and tracks. In this case, the re-
spective weights are set to 0.9, 0.6, 0.1, and 0.1. Clearly, the weights
have been empirically set here in order to derive qualitative conclu-
sions. In most cases, the larger weights are set for users and tracks,
the better recommendation performance is observed. The superi-
ority of the QGS-(2) method indicates that the information on tag-
ging contributes less to the music recommendation process. These
conclusions can be verified by studying the F1-measure for various
ranking positions summarized in Table 4.

Table 4. F1 measures at ranking positions 1, 5, 10, and 20. The best
results for each setting are marked with ∗.

F1@1 F1@5 F1@10 F1@20
CF 0.106 0.155 0.131 0.085
MRH 0.273 0.256 0.196 0.180
QGS(1) 0.253 0.284 0.251 0.197∗

QGS(2) 0.315∗ 0.286∗ 0.262∗ 0.184
QGS(3) 0.173 0.274 0.185 0.196

4. GREEK FOLK MUSIC RECOMMENDATION

A dataset of Greek folk music recordings, coined as THALIS-
ERASITECHNIS dataset, was collected from erasitechis
site1. This very primitive dataset contains 227 tracks, 235 tags,
and 41 users. Preliminary averaged recall-precision curves for 25
users are shown in Figure 2. Three groups were included: tags,
tracks, and users. Training and testing was performed similarly
to the experiments conducted in Last.fm. The QGS-THALIS(1)
curve sets larger weights to tags or tracks than the users. The weights
for users, tags, and tracks are set to 0.3, 0.9, and 0.9, respectively.

1http://erasitechnis-aiia.web.auth.gr/music

The QGS-THALIS(2) curve weighs more heavily the users than
the tags or tracks by setting the respective weights to 0.9, 0.4, and
0.4. The reduced accuracy of the QGS-THALIS(2) curve verifies
that the sparse user information does not contribute efficiently to the
recommendation process. By adding more hyper-relations to the hy-
pergraph, the recommendation accuracy could be further improved.
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Fig. 2. Averaged Recall-Precision curves of 25 users of the
THALIS-ERASITECHNIS database.

5. CONCLUSION AND FUTURE WORK

We addressed music recommendation as a ranking problem on a uni-
fied hypergraph by modelling all available types of information and
the high-order relations among them. We solved the ranking problem
by using a group sparse optimization approach. The experimental
results indicated that by exploiting the group structure of the hyper-
graph, the recommendation accuracy was significantly improved.

Further experiments could include more groups in the unified
hypergraph, i.e., the information on genre, artists, albums, or so-
cial networks. Such information is now easily accessible through
online music platforms. By using non-overlapping groups, we as-
sume that each group affects the recommendation process separately.
However, certain groups contain mutual and highly correlated infor-
mation. Accordingly, future work will investigate how overlapping
groups could be exploited in music recommendation. Finally, this
approach can be possibly extended for friend or group recommen-
dation, using the ranking values corresponding to the users or user
groups, respectively.
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