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ABSTRACT

Higher-order integrated wavetable synthesis (HOIWS) is an efficient
technique to reduce aliasing in wavetable and sampling synthesis.
A periodic audio signal is integrated repeatedly before it is stored
in a wavetable. During playback, the pitch of the audio signal can
be changed using interpolation techniques and the resulting signal
is differentiated as many times as the wavetable has been integrated.
Previous discrete-time integrators approximate ideal integration,
which leads to magnitude and phase errors. This paper proposes
an ideal integration method, which is applied in the frequency do-
main with the help of the FFT. Its remarkable advantage is that
both the magnitude and the phase errors are completely avoided in
the special case of periodic signals. The proposed ideal integra-
tor shows a superior performance over previous digital integration
methods. It improves the sound quality of the HOIWS algorithm
and helps it to maintain the original waveform after interpolation
and differentiation stages.

Index Terms— Acoustic signal processing, alias reduction, dis-
crete-time integrators, interpolation, wavetable synthesis

1. INTRODUCTION

Wavetable synthesis [1, 2, 3, 4] and sampling synthesis [5] are two
related sound synthesis techniques. They are based on storing either
a single cycle or a longer part of a periodic waveform in memory, the
so-called wavetable. Accessing this wavetable with different phase
increments, corresponding to a resampling of the waveform, enables
the reproduction of differently pitched tones from one or a small
set of wavetables. Compared to other synthesis techniques, wave-
table synthesis allows the reproduction of complex, spectrally rich
sounds with a relatively low complexity. Recent previous research
on wavetable synthesis include the reduction of peak sample values
in wavetables [6], matching of wavetables to recorded sounds [7, 8],
and the compression of sampled data to save memory [9].

Wavetable synthesizers may reproduce a tone with either a lower
or higher pitch compared to the wavetable sound. In terms of re-
source efficiency, wavetable algorithms that raise the pitch are often
advantageous, because the rich harmonic content of the sound is re-
tained. Thus, a wide range of pitches can be generated from one
wavetable, reducing the memory requirements. On the downside,
increasing the pitch results in aliasing artifacts which compromise
the sound quality severely [10]. Conceptually, the wavetable signal
must be bandlimited with a variable cutoff frequency depending on
the pitch change ratio to avoid or reduce aliasing. This corresponds

to a resampling process which reduces the sample rate by an arbi-
trary ratio.

A few resampling methods are applicable to this problem, e.g.,
[11, 12]. However, when applied to wavetable synthesis, the com-
plexity of these algorithms increases with the pitch ratio, which is
unfavorable for realtime application.

A different approach has been proposed by Geiger [13]: In-
tegrating the waveform stored in the wavetable and differentiat-
ing it after the table lookup reduces aliasing artifacts. This inte-
gration/differentiation scheme is motivated by the differentiated
parabolic waveform algorithm [14], which reduces aliasing in the
synthesis of classical analog waveforms. Recently, a method termed
higher-order integrated wavetable synthesis (HOIWS) has been pro-
posed which extends Geiger’s scheme to higher orders of integration
and differentiation, yielding significantly better alias reduction [15].

Antialiasing methods, including the use of integration/differen-
tiation schemes [14, 16], are extensively covered in the field of band-
limited synthesis of analog waveforms, e.g., [17, 18, 19, 20]. A re-
cent method based on polynomial transition regions [21] is an at-
tempt to extend the antialiasing synthesis methods to generic audio
signals, but they are still not directly applicable to processing of ar-
bitrary sampled waveforms, because the locations of discontinuities
are unknown. The higher-order integrated wavetable and sampling
synthesis discussed in this paper answers to this need: It can be ap-
plied to any periodic waveform.

The present paper focuses on the integration algorithm for cre-
ating the integrated wavetables. We show how the choice of the
discrete-time integrator influences the quality of the HOIWS method
and compare different existing integration filters. To overcome the
errors caused by these methods, we propose a novel algorithm to
perform ideal integration of wavetables. The design of discrete-time
filters for integration is an extensively covered field, with previous
research ranging from classic texts [22, 23, 24, 25] to recent pub-
lications, e.g., [26, 27, 28]. While realizable integrator algorithms
may only approximate the ideal integration process in the general
case, ideal integration is possible for the class of periodic wavetable
signals. The resulting algorithm is efficient and suitable for large
wavetables and high integration orders. It is shown that this opti-
mal integration scheme improves the synthesis quality compared to
existing integration methods.

The remainder of this paper is outlined as follows: Section 2
describes the HOIWS method and the application of discrete-time
integrators to wavetable signals. The ideal integration algorithm is
proposed in Section 3. The performance of the integrator algorithms
is compared in Section 4. Section 5 summarizes the results of this
paper.
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Fig. 1. Signal flow diagram of higher-order integrated wavetable
synthesis. The gray area represents the off-line preprocessing.
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(c) HOIWS, integration order K “ 4, Lagrange interpolation N “ 3
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Fig. 2. Discrete sawtooth spectra, wavetable length 48 (input funda-
mental frequency 918.75Hz), fs “ 44.1 kHz, output fundamental
frequency 1245 Hz. Crosses mark ideal magnitudes of harmonics.

2. INTEGRATED WAVETABLE SYNTHESIS

This section provides a brief characterization of the HOIWS algo-
rithm as proposed in [15] and describes the use of existing discrete-
time integrators to generate integrated wavetables.

2.1. The HOIWS Algorithm

The signal flow of the higher-order integrated wavetable synthesis
algorithm is shown in Fig. 1. The waveform srns is K times inte-
grated and stored in the wavetable memory. This integration and any
additional preprocessing is performed off-line and therefore does not
impact the runtime complexity. Accessing the wavetable generally
requires an interpolation filter hcptq to suppress spectral images of
the discrete-time wavetable signal [5]. Filtering the interpolated sig-
nal xrms with a Kth-order differentiator DpKqpe jω

q yields the out-
put signal yrms. Several designs for this differentiator, including
maximally flat and minimax differentiators, are evaluated in [15].

The effect of the HOIWS algorithm is illustrated in Fig. 2. In this
example, a single cycle of a sawtooth signal is stored in a wavetable
of length 48, corresponding to a fundamental frequency of 918.75 Hz
at a sampling frequency fs “ 44.1 kHz. This waveform is repro-
duced with a fundamental frequency of f “ 1245Hz (note D#6),
that is, a pitch change ratio of about 1.36. The ideally bandlimited
spectrum is shown in Fig. 2(a). A trivial table lookup, i.e., round-
ing the required output times to the nearest sample location, results

Table 1. Coefficients of IIR integrators, order K “ 1.

Integrator Transfer function

Rectangular 1
1´z´1

Trapezoidal 1
2

1`z´1

1´z´1

Simpson’s rule 1
3
` 1`4z´1`z´2

1´z´2

Al-Alaoui [25] 1
8

7`z´1

1´z´1

Upadhyay&Singh [28] 0.8657 1`0.681z´1`0.0628z´2

1´0.4975z´1´0.5025z´2
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Fig. 3. Frequency response of discrete-time integrators, order K“1.

in considerable aliasing, depicted in Fig. 2(b). The HOIWS algo-
rithm with a simple first-order rectangular integrator, integration or-
derK “ 4, a Lagrange interpolator of orderN “ 3, and a fourth-or-
der minimax differentiator yields the spectrum displayed in Fig. 2(c).
It shows a considerable reduction of aliasing components, but also
introduces noticeable magnitude errors of the desired harmonics.

2.2. Discrete-Time Integrators

To integrate discrete-time wavetables, digital integrators are used.
The ideal frequency response of a digital integrator of order K is

H
pKq
id

´

e jω
¯

“

ˆ

1

jω

˙K

, (1)

which is not realizable by a finite-order discrete-time system. Thus,
practical implementations only approximate this response. They are
generally implemented as IIR filters. Numerous digital integrators
have been proposed, ranging from IIR filter representations of nu-
merical integration formulas such as the rectangular, the trapezoidal,
or Simpson’s rule [22, 23, 25] to low-order IIR approximations of
(1), such as the Al-Alaoui integrator [25] or the design proposed by
Upadhyay and Singh [28]. In previous work on the HOIWS algo-
rithm [15], only the rectangular rule has been used. Table 1 shows
the transfer functions of the discrete-time integrators considered in
this paper for order K “ 1.

The magnitude responses of these filters are displayed in Fig.
3(a). It is observed that the magnitude responses of the numerical
interpolation formulas (rectangular, trapezoidal, and Simpson’s rule)
exhibit significant magnitude errors with respect to the ideal integra-
tor. In particular, Simpson’s rule shows a strong amplification of
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high frequencies, caused by its transfer pole at ω “ π. Fig. 3(b)
shows the corresponding phase responses. The phase of the trape-
zoidal rule and Simpson’s rule conform to the ideal phase response,
which is a constant phase shift of´πK{2. In contrast, the rectangu-
lar rule, the Al-Alaoui integrator, and the Upadhyay&Singh design
introduce frequency-dependent phase errors.

2.3. Integration of Wavetables

Although the discrete-time integrator defines the characteristics
of the integration, it does not determine the integrated waveform
uniquely. As in the integration of continuous functions, a constant
of integration has to be specified for each order of integration. In the
case of a discrete-time integrator, these constants correspond to the
initial states of the IIR filter.

For wavetable synthesis, these free parameters can be deter-
mined from the properties of the synthesized sounds. As wavetables
are played back repeatedly, the wavetable signal xrns can be con-
sidered as one period of an infinite-duration periodic signal

xrns “ xrn´ Ls “ xrn mod Ls for n P Z . (2)

For distortion-free reproduction, the sequence xrns must be contin-
uous over loop boundaries [2, 9]. This continuity must also hold for
the integrated wavetable signals spkqrns, 1 ď k ď K, because high-
frequency components due to signal discontinuities are dispropor-
tionately amplified by the differentiator. The continuity requirement
can be fulfilled by restricting the dc (zero-frequency) components of
the signals spk´1q

rns to zero:

L´1
ÿ

n“0

spk´1q
rns “ 0 for k “ 1, 2, . . . ,K , (3)

where sp0qrns “ xrns. As described in [15], this can be ensured by
subtracting the mean of the sequence before integration.

3. IDEAL INTEGRATOR FOR PERIODIC SIGNALS

In this section, we derive an ideal integration method for periodic
discrete-time signals such as wavetables. Due to the inherently in-
finite impulse response nature of integration [24], the frequency re-
sponse of a discrete-time integrator (1) cannot be expressed by a
finite-length impulse response. However, it can be modeled as an
infinite convolution with a real-valued impulse response hpKq8 rns

spKqrns “
8
ÿ

k“´8

h
pKq
8 rksxrn´ ks with hpKq8 rks P R . (4)

If the sequence xrns is periodic according to (2), then this impulse
response can be transformed into a finite sum

spKqrns “
L´1
ÿ

k“0

hpKqrksxrn´ ks with hpKqrks P R , (5)

which represents a circular or periodic convolution [29]

spKqrns “ hpKqrns f xrns . (6)

In the discrete frequency domain, a circular convolution corresponds
to a multiplication of the discrete Fourier transforms (DFT) of the
two sequences

SpKqrls “ Xrls ˆHpKqrls (7)

with Xrls “DFT txrnsu, HpKqrls “DFT
!

hpKqrns
)

, SpKqrls “

DFT
!

spKqrns
)

. Here, DFT t¨u represents the discrete Fourier
transform (DFT) operator.

Basically, the discrete frequency response HpKqid rls is obtained
by sampling the ideal frequency response HpKqpe jω

q (1) at the dis-
crete frequencies ω “ 2πl{L

HpKqrls “ HpKq
ˆ

e j
2πl
L

˙

0 ď l ă L . (8)

For practical application, however, two additional conditions must
be incorporated.

First, to obtain a real-valued impulse response hpKqrns, its DFT
must be conjugate symmetric (e.g. [29, 30])

H
pKq
id rL´ ls “ H

pKq
id rls 1 ď l ă L , (9)

where H denotes complex conjugation. If L is even, this implies
H
pKq
id pL{2q “ 0.

Second, the component HpKqr0s requires a separate treatment.
It cannot be deduced from H

pKq
id rlspe jω

q, because this frequency re-
sponse is not finite at ω “ 0. However, the value HpKqr0s describes
the translation of dc components from the sequence xrns to the in-
tegrated signal spKqrns. As argued in Section 2.3, the wavetable
integration process should suppress dc components in xrns to gain a
periodic waveform that preserves loop continuity. This property can
be enforced by setting HpKqr0s “ 0.

Combining these considerations, the discrete frequency re-
sponse is determined by

HpKqrls “

$

’

’

’

&

’

’

’

%

0 , l “ 0

p2jπl{LqK , 1 ď l ă L{2

p´2jπl{LqK , L{2 ă l ă L

0 , l “ L{2, L even

. (10)

The integrated wavetable spKqrns is computed by applying this fre-
quency response in the DFT domain followed by an inverse discrete
Fourier transform DFT´1

t¨u

spKqrns “ DFT´1
!

HpKqrls ˆDFT txrnsu
)

. (11)

Since these transforms are efficiently implemented by the fast
Fourier transform (FFT), the proposed ideal integration method
is practical for very large wavetables also. In contrast to IIR inte-
grators, it does not only provide exact magnitude characteristics, but
also the ideal phase response.

4. EVALUATION

The effect of the integration method on the quality of the HOIWS
algorithm is evaluated using the sawtooth synthesis example of Fig.
2. The resulting spectra and time domain signals are shown in Fig.
4 and Fig. 5, respectively. For comparison, Fig. 4(a) repeats the
output spectrum resulting from the rectangular rule already shown
in Fig. 2(c). Considering the magnitude responses of the integra-
tion algorithms shown in Fig. 3, it is evident that the amplification
of high frequencies results from the magnitude error of the rectan-
gular rule. The phase response error of this integrator leads to a
misalignment of the time-domain signal as shown in Fig. 5(a). In
contrast, the trapezoidal rule does not cause phase errors, but yields
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(c) Simpson’s rule
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(d) Al-Alaoui integrator

0 kHz 5 kHz 10 kHz 15 kHz 20 kHz
−80 dB

−60 dB

−40 dB

−20 dB

0 dB

f

(e) Upadhyay&Singh integrator
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(f) Proposed ideal wavetable integrator
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Fig. 4. Effect of the integrator algorithms on the HOIWS algorithm. Sawtooth wave, wavetable length 48 (input fundamental frequency
918.75Hz), fs “ 44.1 kHz, output fundamental frequency 1245 Hz. Integration order K “ 4, Lagrange interpolation N “ 3, minimax
differentiator. Crosses mark the ideal magnitudes of the harmonics.
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Fig. 5. Time domain signals of the synthesized sawtooth wave. The
gray dotted signal represents the ideal bandlimited waveform.

a significant magnitude roll-off towards high frequencies, which also
attenuates aliasing and imaging components. Figures 4(b) and 5(b)
depict the effect of this integrator in the frequency and time domain,
respectively. As shown in Fig. 4(c), the spectrum obtained by us-
ing Simpson’s rule shows increased magnitudes of higher passband
harmonics, but also a disproportionate amplification of aliasing and
imaging terms, Both are caused by the large high-frequency gain of
the integrator’s frequency response. In this example, the maximum
level of aliasing terms is about +15 dB. As shown in Fig. 5(c), this
has a catastrophic effect on the time-domain signal (note the changed
axis scaling).

The synthesized signals based on the Al-Alaoui and the Upad-

hyay&Singh integrators provide a good match to the magnitude
spectrum of the ideal bandlimited sawtooth wave, as shown in Fig.
4(d) and 4(e). However, the corresponding time-domain signals,
depicted in Fig. 5(d) and 5(e), exhibit significant misalignment due
to phase errors. As shown in Fig. 4(f) and 5(f), the proposed ideal in-
tegration method approximates the ideal bandlimited signal closely
and without phase errors, thus improving the synthesis quality.

5. CONCLUSION

In this paper, we investigated the influence of the integration method
on the quality of the higher-order integrated wavetable synthesis
method. It became clear that this choice has a significant effect on
the passband quality of the output waveform, and consequently also
on the magnitude of aliasing and imaging artifacts. In particular, the
integration filters obtained from standard numerical formulas such
as the rectangular, trapezoidal, or Simpson’s rule yield considerable
passband errors. Sophisticated wideband IIR integrators provide an
accurate magnitude response, but introduce phase errors.

As a main contribution of this paper, we propose an ideal inte-
gration algorithm for periodic wavetable signals. By expressing the
integration as a circular convolution of finite-length sequences, the
DFT of the proposed integration filter is obtained by sampling the
frequency response of the ideal integrator. As an additional advan-
tage, desirable properties such as the suppression of dc components
can be directly incorporated into this discrete filter. Integration of
wavetables is performed in the discrete frequency domain. Using
fast implementations as the FFT, this enables efficient integration for
large wavetables and arbitrary orders of integration while avoiding
both magnitude and phase errors. In this way, the proposed algo-
rithm improves the quality of the higher-order wavetable and sam-
pling synthesis algorithm.
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