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ABSTRACT

A common approach to the detection of simultaneous musi-
cal notes in an acoustic recording involves defining a function
that yields activation levels for each candidate musical note
over time. These levels tend to be high when the note is ac-
tive and low when it is not. Therefore, by applying a simple
threshold decision process, it is possible to decide whether
each note is active or not at a given time. Such a threshold,
in general, is hard to set and has no physical meaning. In this
paper, it is shown that the rhythmic characteristic of the mu-
sical signal may be used to obtain a suitable threshold. The
proposed method for obtaining the threshold is shown to have
a greater generalization capability over different databases.

Index Terms— Polyphonic note tracking, Transcription,
Rhythm.

1. INTRODUCTION

Note tracking is the task of detecting musical notes in an
acoustic signal. Note trackers may be used for several ap-
plications, such as query-by-content databases [1], automatic
music tutoring software [2] and computer-assisted musical
analysis [3]. Due to its usefulness, it has become an important
problem in the context of Music Information Retrieval (MIR),
and several approaches to this problem are evaluated yearly in
the Music Information Retrieval Exchange (MIREX) [4].

Most recent note tracking systems are based on execut-
ing a function that yields activation values for each note over
time. This may be understood as building an activation matrix
A, where ap,q has a high value if the note p is active in the
time frame q, and a low value otherwise. After that, a sim-
ple threshold is applied so that high values are separated from
low ones [5, 6, 7].

However, there has not been, so far, discussion on how
to find a suitable value for the threshold. In general, it is set
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manually or using supervised training. Using a fixed thresh-
old ensures that the decision system can be executed in real
time, but, at the same time, it may yield sub-optimal results.

This paper proposes an unsupervised method for finding
an optimal threshold for note detection in an activation ma-
trix A. The proposed method assumes that a piece of music
probably presents rhythm, thus the detected events should be
organized as to resemble time-wise periodicities. Therefore,
the desired threshold should maximize periodicity of the de-
tected events.

The experiments performed in this paper are based on a
state-of-the-art note tracking algorithm proposed by Dessein
et al. [5]. It was observed that using the periodicity for ob-
taining a threshold gives results that are equivalent to using
an optimal threshold, obtained using supervised training. It is
shown that the unsupervised method also works with datasets
with significant timbre differences, without the need for run-
ning a new training process.

This paper is organized as follows. In Section 2, related
work on note tracking is discussed. In Section 3, the proposed
method for finding optimal thresholds is discussed. The ex-
perimental setup, the results and other discussions are shown
in Section 4 and conclusive remarks are stated in Section 5.

2. RELATED WORK

Thresholding is a one-dimensional classification technique
that has been used in many note-tracking systems. It consists
of assigning an element to group 1 if its value is higher than
a threshold α or to group 0 otherwise. This method is used
to separate significant source activities from noise, such as
thresholding the output of a detector to avoid false positives.

Many systems for note tracking rely on the factorization
of a spectrogram X as a linear combination A of spectral
templatesB related to notes [8, 9, 6, 10, 7, 11, 5, 12, 13, 14],
that is, X ≈ BA. Although it is possible to obtain this
approximation using many different techniques, all systems
based on this approach currently use a threshold decision pro-
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cess to estimate which notes are active and which are not.
Other systems have used a nonlinear approximation of the

spectrogram, rather than a linear one [15, 16, 17]. In this case,
the note activation level is obtained by a nonlinear function,
like a neural network. Again, activation levels for each note
are yielded and systems often rely on thresholding for decid-
ing over note activity.

Bayesian classifiers, which are base on statistical proper-
ties of the elements to be classified, have also been used for
note tracking [18, 19, 20]. Implicitly, they also use the idea of
thresholding [21], which is preceded by a nonlinear mapping
to a space where thresholding can be applied. This is similar
to the case of neural networks.

All of the systems cited above map the spectral content of
the analyzed audio, over time, to a space of note activations
a. After that, a threshold-based decision process determines
which notes are active and which are not. However, to the
authors’ knowledge, there has been no systematic discussion
on how to obtain the threshold.

It is usual to obtain the threshold manually, which is in-
teresting for real-time applications, as the detection sensitiv-
ity may be configured according to the user’s style and needs
regarding false positives and false negatives. However, this
can greatly harm the system’s final results for offline appli-
cations, as the manually-set threshold may not generalize for
different instruments, different musicians or simply different
data acquisition conditions. Furthermore, the detected activa-
tion levels often do not have any physical meaning, making it
hard to set them manually without considerable testing.

This paper proposes using an expected property of the out-
put, namely the rhythm, to automatically calculate a suitable
value for the threshold. The system is designed to operate of-
fline, using a long-term audio property to obtain its results.
In the next section, the method will be described in further
detail.

3. THE PROPOSED METHOD

Periodic signals are those that may be described by the ex-
pression x(t) = x(t− τ), where τ is the fundamental period
of x(t). In many applications, however, signals have only an
approximately periodic behavior, due to either noise or the
natural dynamics of the system. For this reason, it is impor-
tant to deal with the concept of periodicity level.

The concept of periodicity level is employed by many
methods for fundamental frequency estimation in audio. Two
emblematic cases are the Yin method [22], which consists of
estimating a value of τ that minimizes ‖x(t) − x(t − τ)‖2,
and the multiple fundamental frequency estimation method
developed by Klapuri [23], which consists of calculating the
weighted sum of Discrete Fourier Transform coefficients to
detect which fundamental frequency candidates are more
prominent. In both cases, a definition for the periodicity level
is built based on either time-domain or frequency-domain

properties of periodic signals.
The method discussed in this section aims at finding the

threshold α that, when applied to the activation matrix A,
yields a binary detection matrix D that presents the greatest
periodicity. The periodicity of D is related to the timewise
organization of the detected events, and the exact nature of
such events may be ignored for this purpose. To represent
these structures, the vector c =

∑
∀i di,j is calculated, and cj

is the number of active events in the j-th signal frame.
It is clear that the periodicity characteristics of c will be

affected by changing α, as true positives are expected to be
organized in a more periodic structure than events detected as
false positives. The periodicity level is closely related to how
much of the signal can be described using a Fourier series. It
is calculated using the spectrum of c, as follows.

The spectral representation γ of c is calculated by sub-
tracting the mean value of c to avoid the DC component, mul-
tiplying it by a Hanning window to reduce spectral leakage,
and then calculating its DFT. Both magnitude and power rep-
resentations for γ were tested in order to determine which
is more representative. The prominence of the Fourier series
that can describe the spectrum is given by its Harmonic Sum
Spectrum (HSS), calculated as follows:

1. γH ← γ,

2. w ← 2,

3. u← γ downsampled by a factor of w,

4. γH ← γH + u,

5. w ← w + 1,

6. If w < 9, go back to step 3. Else end.

The maximum value of the HSS corresponds to the promi-
nence of the strongest Fourier series that can be used to de-
scribe c. As a result, the ratio y = maxγH/(

∑
∀j γj) repre-

sents how well c can be described as a periodic signal, thus y
is the periodicity level of c. As the periodicity level has been
defined, it is necessary to define a search algorithm for α.

Preliminary tests have shown that calculating the period-
icity y is considerably faster than calculating the activation
matrix A. For this reason, the search for α may be con-
ducted using exhaustive search, in a range in which the op-
timal threshold is likely to be found. In this work, the search
was carried out between the mean and the maximum values
ofA.

Experiments showing how the proposed method behaves
in real applications will be shown in the next section.

4. EXPERIMENTS AND RESULTS

The experiments performed in this section were based on
the automatic piano transcriber proposed by Dessein et al.
[5]. This transcriber calculates the linear approximation
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X ≈ BA by first obtaining the prototype vectors B using
supervised training with pre-recorded samples, and then cal-
culating A minimizing the beta-divergence [24] between the
measured spectrogram X and the approximation BA. The
exact details of this method are not important, as it could
be substituted by any other approach that uses the activation
matrix as an intermediate step.

The database used in the following experiments con-
sisted of 24 pieces for piano solo used for testing purposes
by Polliner and Ellis [25]. The samples for obtaining B
were downloaded from the Iowa University Musical Instru-
ment Samples database [26]. Audio files were rendered from
the MIDI files using the Iowa University samples and were
labeled as the IOWA dataset. These audio files were later
processed by adding a digital chorus effect, generating the
CHORUS set, which aims at simulating an analysis over a
different timbre.

In all experiments, the performance measurements, as
adopted in MIREX, were calculated as follows. A note is
considered correct if its pitch matches (has the same MIDI
number) and its onset is within 50 ms of the onset of a note in
the ground truth. The recall is defined as the ratio between the
number of correct notes and the total number of notes in the
ground truth. The precision is defined as the ratio between
the number of correct notes and the total number of notes
yielded by the automatic system. The F-Measure is defined
as the harmonic mean between the recall and the precision.

The first test aimed at evaluating the correlation between
the F=Measure and the periodicity level. For this purpose, the
A matrix of a piece selected at random from the IOWA set
was calculated, and the detection threshold was progressively
increased. For each threshold value, the performance mea-
surements and the periodicity level were measured, yielding
the values seen in Figure 1.
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Fig. 1. Periodicity of a detection matrix D and the related
F-Measures, for different threshold levels considering a sin-
gle piece. The periodicity value was normalized to provide a
better visualization.

As can be seen, the F-Measure curve presents a close-to-
maximum value when the periodicity value is at its the global
maximum. The shape of the periodicity curve is reasonably
similar to the shape of the F-Measure curve, which indicates
that it can be useful in finding an optimal threshold. This
hypothesis must be assessed by means of tests over the whole

database.
These tests were performed as follows. First, using the

IOWA set, the value for α that yields the greatest F-Measure
was calculated by exhaustive search. This is the value that
maximizes the performance of the system when using a fixed
threshold, considering the best case scenario. After that, new
thresholds were obtained considering the periodicity maxi-
mization, using both the magnitude and the power spectrum
representations for γ. The mean value1 of each performance
measure, considering each one of these methods, is shown in
Figure 2.
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Fig. 2. Recall (R), Precision (P) and F-Measure (F) obtained
for the IOWA database when using a fixed threshold and using
the periodicity approach, considering both the power and the
magnitude spectral representations.

As can be seen, the performance measurements, when us-
ing the proposed approach, have only a small difference in
comparison with the supervised training approach. This re-
sult is important, since the periodicity approach is unsuper-
vised, and the optimal value for the fixed threshold can only
be obtained if the ground-truth result in known a priori.

The final test analyzed the effects of using the same
threshold for different datasets. For this purpose, two thresh-
olds were used to detect notes in the CHORUS dataset: a
fixed threshold that maximizes the average F-Measure over
the dataset, and a trained threshold, which was obtained by
maximizing the average F-Measure over the IOWA dataset.
The results obtained using both thresholds were compared
to those obtained using the periodicity method, as shown in
Figure 3.

The comparison shows that using the trained threshold for
a different database significantly harmed the F-Measure of the
system. This is a consequence of the sensible decrease in
the Recall, which could not be balanced by the increase in
the Precision. Thus, the optimal detection threshold may be
different for different databases.

These differences in Recall and Precision were smaller
when using the periodicity with a power spectrum represen-
tation. As a consequence, a higher average F-Measure was
observed. This shows that, although the periodicity cannot

1The confidence intervals were calculated using the expression σ/
√
N ,

where σ is the standard deviation of the measure over the dataset and N is
the number of pieces in the dataset.
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Fig. 3. Recall (R), Precision (P) and F-Measure (F) obtained
for the CHORUS database when using a fixed threshold, a
threshold trained in the IOWA database (Trained) and using
the periodicity approach, considering both the power and the
magnitude spectral representations.

yield an optimal average result, it is more robust to variations
in the database than performing supervised training in a fixed
threshold.

Periodicity has shown to be effective for finding a thresh-
olds that give good average results over a database, especially
when using the power spectrum representation. Also, it is
obtained without the need for ground truth or manual setup,
and is flexible towards different databases, which are desir-
able characteristics for music transcription applications.

5. CONCLUSION

This paper presented a novel training algorithm for the de-
tection threshold of note-tracking systems. The presented
method uses an important aspect of music, the rhythm, to
search for an optimal threshold by means of unsupervised
learning. It has been shown that the average results yielded
when using the proposed method are comparable to those ob-
tained by the best theoretical optimal threshold.

The method was tested using the note tracker proposed by
Dessein et al. [5], chosen because of its simplicity. Neverthe-
less, it is applicable to any note tracking algorithm that uses an
activation matrixA, where ai,j has high values if the i-th note
is active in the j-th frame and low values otherwise. This is a
common step in many note tracking algorithms, which means
that the periodicity-based threshold optimization is highly ap-
plicable in future research.

By using the proposed method, it is possible to run tran-
scription algorithms over different databases, without requir-
ing a training corpus for each one of them. As it has been
shown, the unsupervised training outperforms the scenario
where a database is used for training and another one is used
for testing. This shows that the periodicity is an important
feature to consider in note-tracking algorithms.

Future work points at finding other features that, com-
bined to the periodicity, may result in an improvement to the
system. Among those, the sparsity of the representation [27],
as well as the expectancy on the time-domain progression the
activation of notes [28], have shown to be interesting features.

However, other musically-related features remain to be dis-
covered.
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