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ABSTRACT
Automatic Music Transcription (AMT) seeks to understand a
musical piece in terms of note activities. Matrix decomposi-
tion methods are often used for AMT, seeking to decompose
a spectrogram over a dictionary matrix of note-specific tem-
plate vectors. The performance of these methods can suffer
due to the large harmonic overlap found in tonal musical spec-
tra. We propose a row weighting scheme that transforms each
spectrogram frame and the dictionary, with the weighting de-
termined by the effective correlations in the decomposition.
Experiments show improved AMT performance.

Index Terms— Matrix decompositions, sparse represen-
tations, dictionary coherence, automatic music transcription

1. INTRODUCTION

Automatic Music Transcription (AMT) is a musical machine
listening problem, in which a pitch-time representation of
a musical piece is sought. AMT is often performed using
matrix decomposition methods, which seek to decompose a
spectrogram S ∈ RM×N such that

S ≈ DT (1)

where D ∈ RM×K is a dictionary matrix with a spectral atom
dk in each column, and T ∈ RK×N is a coefficient matrix
containing the temporal activations of a corresponding atom
in each row. When the dictionary atoms are pitch labelled, T
admits a pitch-time representation.

The most common matrix decomposition methods used
for AMT are based on Non-negative Matrix Factorisation
(NMF), for which algorithms for the Euclidean distance and
Kullback-Leibler (KL) divergence cost functions were orig-
inally proposed in [1]. NMF was first proposed for AMT in
[2], and variations have been proposed for machine listening.
Penalty terms for properties such as time persistence [3] [4]
and alternative cost functions, such as the Itakuro-Saito (IS)
divergence [5], and the generalised β-divergence [6] have led
to improved AMT. While NMF was proposed as a dictionary
learning method, the best AMT results are found when a fixed
dictionary, trained on relevant signals, is used [7].
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Several problems may be seen when using matrix de-
compositions for AMT. Due to the harmonic nature of tonal
music, each atom in the dictionary is highly overlapping with
several other atoms. This can lead to harmonic jumping,
where incorrect detections made in the AMT are harmoni-
cally related to notes that are known to be active, a problem
common to all AMT methods. Using matrix decomposition
methods, we have observed that harmonic jumping usually
takes the form of truly recognised notes being accompa-
nied by the false recognition of harmonically related “ghost”
notes. Low energy elements may be present in the spectro-
gram e.g. at the tail of a sustained piano note, which may be
temporally (and harmonically) coincident with higher energy
elements. Typically for AMT using matrix decompositions,
a hard thresholding is performed on the coefficient matrix T,
with pitch-time points above the threshold deemed to repre-
sent active notes. In selecting a threshold, it is hoped to keep
low energy signal elements representing active notes whilst
omitting as many harmonic “ghost” elements as possible.

In the sparse representations literature, recovery condi-
tions of signals have been proposed based on dictionary co-
herence [8]. Hence methods have been proposed for precon-
ditioning overcomplete dictionaries [9] [10] [11], by reducing
coherence in order to improve recovery. While musical dic-
tionaries, which are often not overcomplete, are seen to fail
in terms of recovery conditions, even for two atoms, it is the
presence of correlated atoms in the matrix decomposition that
is the chief obstacle to AMT.

In the rest of this paper, we briefly introduce dictionary
coherence and coherence-reducing methods used for sparse
representations. Then, experiments are described showing
that using transforms which lead to less coherent dictionaries
can improve AMT performance. A method for reducing the
effective coherence in a decomposition is proposed, followed
by experimental results using this method. We then conclude,
showing pointers for further work.

2. DICTIONARY COHERENCE

In the sparse representations literature, conditions on the ex-
act recovery of noiseless signals are given in terms of coher-
ence [8] and the Restricted Isometry Property (RIP) [12]. Co-
herence is defined as the maximum correlation between atoms
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in the dictionary. Assuming that ‖dk‖ = 1 ∀k the coherence
is defined as

µ = max
i 6=j
|dT

i dj | (2)

and a further measure, the cumulative coherence is defined by

µ(k) = max
i

max
|J |=k ,i /∈J

∑
j∈J
|〈di ,dj 〉| (3)

where k is the number of atoms considered in the cumula-
tive coherence, and µ(k) is the maximum sum of any k off-
diagonal elements in one column of the Gram matrix G =
DTD. By definition it is seen that µ(1) = µ and µ(k) ≤
kµ. Both the greedy Orthogonal Matching Pursuit algorithm
(OMP) [13] and the optimisation based Basis Pursuit (BP)
[14], are shown to recover a k-sparse signal representation
exactly [8] in the noiseless case when

µ(k) + µ(k − 1) < 1 (4)

which is guaranteed when kµ < 0.5.
With the dictionaries and signals of interest to this work,

typically it is found that µ > 0.7, as seen in Table 1, and the
pessimistic recovery properties based on coherence would
not give any assurances of recovery performance. However,
some relationship between coherence based measures and
transcription performance may be observed.

Several methods for countering the effects of dictionary
coherence have been proposed, in particular for use with
greedy methods, based on OMP [13]. For example, in [9] a
sensing dictionary is derived for use with a modified OMP
algorithm. Similarly in [11], the authors propose a data-
adaptive sensing dictionary for use with the same modified
OMP. Both of these works focus on dictionaries which are
relatively incoherent such as unions of bases or Gaussian
random matrices, and use quasi-orthogonalisation to perform
decoherence. In [10] a dictionary learning method which
seeks to learn incoherent dictionaries is shown to achieve
improved sparse approximations in audio signals. A non-
negative version of OMP (NN-OMP) is proposed in [15].
The authors note that problems with dictionary coherence
are innate to non-negative dictionaries, and propose a pre-
conditioning which centres the data and dictionary, reporting
improved performance for sparse recovery. However, exper-
iments with this method were not shown to enhance AMT
performance, possibly due to the large harmonic overlap.

3. SOME AMT EXPERIMENTS

In [16] the Short-Time Fourier Transform (STFT) and the
Equivalent Rectangular Bandwidth (ERB) transform were
compared for the purpose of AMT, showing similar perfor-
mance. In [16] an audio sampling rate of 22.05kHz was
used and spectrograms using an STFT of dimension 1024
with 75% overlap and an ERB transform of dimension 250

κ(D) ‖G− I‖F µ F
STFT(1024) 42.87 19.82 0.8695 64.0
STFT (2048) 43.13 19.93 0.8693 64.1
ERB (250) 55.35 20.11 0.8723 66.7
ERB (512) 24.36 15.74 0.8619 68.4
ERB(1024) 17.30 13.85 0.8513 68.6

Table 1. Several matrix measures on dictionaries learnt from
the same data for different transforms and AMT results in
terms of F -measure

interpolated onto a 23ms grid were used for AMT. We extend
this exploration, using also an ERB of dimension 512 at the
same sampling rate, as well as an STFT of dimension 2048
and an ERB of dimension 1024 both using the higher sam-
pling rate of 44.1kHz, and also using some matrix measures
to compare the dictionaries learnt for each transform.

The AMT experiments were performed on the first 30s of
30 classical piano pieces, recorded live on a Disklavier piano,
from the MAPS database [17]. The dictionaries are learnt of-
fline using Euclidean NMF [1] with one atom learnt per note
from signals containing isolated notes, recorded in the same
environment as the recorded piano pieces. The same audio
signals used for learning atoms across all transforms.

For all transforms, the decomposition was performed on a
frame-wise basis using Non-Negative Least Squares (NNLS)
[18]:

t = arg min
t
‖s−Dt‖22. (5)

In particular, a fast variant of NNLS [19] was used, and it is
noted that results are equivalent to using the Euclidean NMF
coefficient update. Subsequent thresholding was performed
with the threshold, η, adapted to the signal through use of the
maximum value of the decomposition T and the parameter δ

η = δ ×maxT. (6)

AMT performance was measured by comparing the resultant
decompositions with the ground truths available in MAPS.
True positives, tp, false positives, fp, and false negatives,
fn, were labelled allowing the precision, P = #tp

#tp+#fp , re-

call, R = #tp
#tp+#fn and F-measure F = 2 × P×RP+R met-

rics to be calculated. The metrics were calculated for various
δ ∈ {−15dB, ......,−40dB}, and the results are given for the
optimal value of δ across all tracks.

Some matrix metrics were calculated for the various dic-
tionary matrices. The matrix condition number, κ(A) =
σmax(A)/σmin(A) is the ratio of the largest and smallest
singular values of the matrix. To give some measure of
all dictionary correlations ‖G − I‖F where G = DTD is
used, where ‖X‖F is the Frobenius norm of X. The coher-
ence value µ (2) and the cumulative coherence µ(k) (3) for
k ∈ {1, ....88} are also calculated.

In Table 1 the AMT results in terms of F-measure are
given for each transform, alongside matrix measures of the
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Fig. 1. Cumulative coherence µ(k) plotted against k for dic-
tionaries learned from the same dataset in several transforms

corresponding dictionaries. In Figure 1 the cumulative co-
herence values for the dictionary in each transform are plot-
ted. The two STFTs are almost indistinguishable, both in
AMT and in dictionary matrix measures. The ERB(250) per-
forms better than the STFT, displaying a lower cumulative
coherence in Figure 1 whilst the tabulated measures are rel-
atively worse. However the transforms which perform best,
the ERB(512) and ERB(1024), are seen to have better val-
ues for all matrix measures relative to the other transforms,
and further to this the ERB(1024) which shows the best AMT
performance displays the optimum value for all matrix mea-
sures. This demonstrates that the AMT performance may be
somewhat related to coherence measures.

4. CONDITIONING A HARMONIC DICTIONARY

Row weighting is known to effect a least squares solution
[20], and is a commonly used approach in methods such
as Total Least Squares [21]. We propose a row-weighting
scheme for AMT, using a diagonal weighting matrix W
which seeks to reduce the effects of harmonic coherence on
musical spectra decompositions. While it would be desir-
able to find a single weighting matrix which would enhance
many decompositions, in practice this is found not to be vi-
able. Instead, based on the NNLS solution tn a different
weighting matrix, Wn is derived at each time frame, which
is then applied to both the dictionary and the signal giving the
alternative approximation :

Wnsn ≈ D̂t̂n (7)

where D̂ = WnD. This transformation results in the Gram
matrix Φ = D̂T D̂. If the columns of D̂ are normalised such
that ‖d̂i‖2 = 1 ∀i, the Gram matrix is given by Θ, where

Θ[2] = Φ[2] � [hhT ] (8)

where� denotes elementwise division, X[.] indicates elemen-
twise exponentiation of X and h = diag(Φ).

In order to find a suitable value for Wn, we propose an
effective coherence measure :

µe = tT [Θ[2] − IK ]t (9)

The use of the normalised Gram matrix Θ is necessary in the
calculation of µe as t is not updated. The weighting matrix,
Wn is sought that minimises the effective coherence measure
(9), whilst maintaining data integrity. This is performed us-
ing the projected gradient method, with bounds placed on the
possible values of wm = Wm,m. Keeping t constant gives :

∂µe

∂wm
=

∑
i6=j

titj
∂[Θ[2]]i,j
∂wm

(10)

where [X]i,j = xi,j denotes the element in the ith row and
jth column of X, and

∂[Θ[2]]i,j
∂wm

=
2wmΦi,j

‖d̂i‖42‖d̂j‖42
× {2‖d̂i‖22‖d̂j‖22dm,idm,j −

Φi,j(‖d̂i‖22d2m,j + ‖d̂j‖22d2m,i)} (11)

or alternatively, in matrix form

∂Θ[2]

∂wm
= 2wmΦ◦X◦[[2Am◦AmT ]−Φ◦[Zm+ZmT ]] (12)

where ◦ denotes the Hadamard elementwise multiplication,
X = [h[2]h[2]T ][−1] and Am = dmhT and Zm = dm[2]hT ,
where dm is the mth row of D.

After W is estimated a solution to the approximation (7)
is calculated, again using NNLS (5), giving T̂, the new coef-
ficient matrix, from which the transcription is derived.

4.1. Relationship to other work

While decomposition methods are commonplace for the
AMT problem, little work has considered the effects of the
correlation or coherence of the dictionary, with much of the
research emphasis considering structure in the matrix decom-
position. The only work of which we are aware that considers
dictionary correlation in AMT is that of [3] in which atom
coefficients are penalised through multiplication with a co-
herence penalising matrix in dictionary learning based NMF
experiments. Row weighting and scaling is more commonly
used in methods such as Total Least Squares [20] [21], which
also considers overdetermined problems. To summarise, to
the best of our knowledge this is the first work to consider
dictionary conditioning for AMT, and also to use coherence
as a parameter for row weighting schemes. We note that a
similar experimental setup to that used in [7] is used for the
transcription experiments.
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NNLS WNNLS β-NMF Wβ-NMF
ERB (250) 66.7 69.7 71.9 73.7
ERB (512) 68.4 72.6 74.9 77.0
ERB(1024) 68.6 73.7 75.2 77.9

Table 2. Transcription results comparing the weighted meth-
ods (WNNLS and Wβ-NMF ) against the unweighted meth-
ods in terms of F-measure

5. SOME FURTHER EXPERIMENTS

Further AMT experiments were run using the row weight-
ing scheme. A similar setup to the earlier experiments was
used, however the experiments were now limited to the ERB
transforms. For the considered transforms, NNLS was used to
decompose the spectrograms using the same dictionaries as in
the previous set of experiments, and a subset of the atoms was
selected by thresholding at each time frame of the decompo-
sition (6) with δ = 0.01. This subset was used to calculate the
weighting matrix Wn at the nth spectrogram frame, and W
was bounded to have values in the interval (0.4 1.6) giving
an extremal weighting factor of 4. A NNLS decomposition
was performed on the transformed signal Wnsn using the
transformed dictionary D̂. Similar to the earlier experiments,
results with an optimum relative threshold are reported.

Experiments were also run using the generalised β-NMF
[6], which has been shown to enhance transcription perfor-
mance [7]. Experiments were run using the same dataset and
dictionaries as above. The value of β = 0.5 was used as this
setting was seen to be the optimum value for AMT on a sim-
ilar dataset [7]. Weighted experiments were also run using
the β-NMF, using the weightings that were derived for the
weighted NNLS experiments.

The results for these experiments are shown in Table 2,
where it is seen that the weighted methods modestly out-
perform their unweighted counterparts. In particular the
weighted NNLS experiments show improvements of up to
5.1%, with improvements more marked in the already better
performing transforms. In the case of β-NMF, the improve-
ments through weighting are seen to be relatively small,
which may in part be due to using a weighting derived from
an NNLS decomposition. It is noted that the results for
β-NMF without weighting are seen to improve more signifi-
cantly than NNLS as the dimension of the ERB transform is
increased. Overall it is seen that using a more suitable trans-
form and the reweighting scheme results in an improvement
of 7% and 6%, for the NNLS and the β-NMF respectively,
which is significant in terms of AMT performance. An exam-
ple data weighting is seen in Figure 2 where the weightings
are seen to be often set to extremes, which is common. While
significant downwards scaling of the signal can be seen in
this example, this is not indicative, as upwards scaling is as
likely. However the relative flattening effect seen in Figure
2 is a general phenomenon, as the correlation between two

Fig. 2. Example data point sn (top), weighting vector wn

(centre) and weighted datapoint Wnsn (bottom).

atoms is most significantly reduced when coincidentally large
elements are scaled down. Closer inspection of the results
of the weighted NNLS shows that while the AMT recall
may be slightly improved, the precision is more significantly
improved, as the number of false positives is reduced. This
validates the approach taken, which sought to eliminate some
of the false positives found in notes correlated to those that
are active.

6. CONCLUSIONS AND FURTHER WORK

It has been shown that current AMT performance may be im-
proved by considering the condition of the dictionary, which
may be improved by using appropriate transforms. A row
weighting scheme reducing an effective coherence metric was
introduced, resulting in modestly improved AMT. However,
further investigation may be worthwhile using different co-
herence metrics and experimenting with weighting bounds.
The coefficient vector was fixed throughout the coherence re-
duction and it may be useful to update this. The reweighting
scheme is currently computationally expensive relative to the
decomposition methods, an issue we hope to address, possi-
bly using multiplicative updates due to the non-negativity of
the problem and warm restarts.
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