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ABSTRACT

This paper investigates how precise a model should be for a robust
model-based NMF analysis of piano recordings. While inharmonic-
ity is an essential feature of piano tones from a perceptual point of
view, its explicit inclusion in sound models is not straightforward
and may even damage the quality of the analysis. Here, we assess
the quality of the analysis with a transcription task, and compare
three different models for the spectra of the dictionary : one strictly
harmonic, one following the theoretical inharmonicity law, and one
with relaxed inharmonicity constraints. Experimental results show
that both inharmonic models can indeed significantly enhance the
results, but only in the case when a good initialization is provided.

Index Terms— non-negative matrix factorization, music tran-
scription, piano, inharmonicity

1. INTRODUCTION

Methods based on non-negative signal representations (such as Non-
negative Matrix Factorization - NMF [1] - or Probabilistic Latent
Component Analysis - PLCA [2]) have been widely applied to au-
dio analysis in the last decade, giving promising results in tran-
scription [3, 4] or source separation [5, 6], to name only but a few
applications. These approaches mainly target the decomposition
of time-frequency representations of musical pieces into two non-
negative matrices: one dictionary containing the spectra/atoms of the
notes/instruments, and one activation matrix containing their tem-
poral activations. Besides the generic “blind” approaches, in order
to better fit the decomposition to specific properties of audio data
(these can be physics-based or signal-based properties), prior infor-
mation can also be used explicitly. For instance, when isolated note
recordings are available, on the same instrument and with the same
recording conditions, the spectra of the dictionary can be learned
independently [7, 4]. In that case, since the dictionary is learned
on monophonic data and fixed at the learning step, high transcrip-
tion performances can be obtained. Another approach consists in
including the information as a parametrization of the model. For
instance, harmonicity [8, 9], temporal evolution of spectral envelop
[10], sparsity of simultaneously activated notes [11], beat structure
[12], etc., have been considered in modelling the dictionary or the
time-activation matrices.

In the case of piano tones, a perceptually important feature is
the inharmonicity of their tones : due to the string stiffness [13], the
frequencies of the partials slightly deviate from a purely harmonic
relation (the frequency fn of the n-th partial is above nf0, where f0
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is the fundamental frequency). Taking into account the inharmonic-
ity of the tones in an NMF-based model has been proposed [14],
but surprisingly the transcription results were found slightly below
those obtained by a simpler harmonic model. These results seem in
contradiction with a naive intuition that inharmonicity should help
lifting typical transcription ambiguities such as with harmonically-
related notes (octave or fifth relations, for instance, where partials
fully overlap).

The goal of this paper is to have a better understanding about
these issues. For this, two types of inclusion of the inharmonicity,
with different degrees of constraints, are proposed and compared to
an harmonic model. The first inharmonic model (later called Inh)
forces the partial’s frequency to strictly follow the theoretical inhar-
monicity law. The second inharmonic model (later called InhR) re-
laxes this constraint, and enhances inharmonicity through a weighted
penalty term. We discuss in particular the influence of the initializa-
tion on the optimization process. Since it is difficult to gauge intrin-
sically the quality of NMF decompositions, these are here evaluated
on a transcription task, on a large database of piano recordings where
we have a ground-truth transcription at hand. It should be empha-
sized that the proposed algorithms do not target to be competitive
with state-of-the-art fully dedicated piano transcription algorithms,
since the only information that is taken into account is the inhar-
monicity of piano tones (for instance, no model of smooth spectral
envelop or temporal continuity of the activations is considered). On
the contrary, the simple post-processing of the data should allow one
to better highlight the differences in the core model.

2. NMF MODELLING FOR PIANO TRANSCRIPTION

NMF consists in solving the approximate low rank factorization:

V ≈WH ⇔ Vkt ≈ V̂kt =
R∑
r=1

WkrHrt, (1)

where V ,W , andH are respectivelyK×T ,K×R andR×T non-
negative matrices. In audio application, V usually corresponds to a
magnitude or power spectrogram, K being the number of frequency
bins and T the number of time-frames. W is then expected to be a
dictionary containing the spectra/atoms of R sources or notes, and
H a time activation matrix [3].

In the following, a parametric model for the spectra of the dic-
tionary W is introduced. It is based on an additive model for which
three different constraints on the partial frequencies are introduced:
these are constrained to follow a strict harmonic, a strict inharmonic
and a relaxed inharmonic relation.
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2.1. General additive model for the dictionary of spectra

Each spectrum of a note, indexed by r ∈ [1, R], is composed of the
sum of Nr partials, the partial rank being denoted by n ∈ [1, Nr].
Each partial is parametrized by its amplitude anr and its frequency
fnr . Thus, the set of parameters for a single atom is denoted by
θr = {anr, fnr | n ∈ [1, Nr]} and the set of parameters for the
dictionary by θ = {θr | r ∈ [1, R]}. Then, the expression of a
parametric atom indexed by r (as similarly proposed in [9]) is set to:

W θr
kr =

Nr∑
n=1

anr · gτ (fk − fnr), (2)

where fk corresponds to the frequency associated to the kth bin, and
gτ to the magnitude of the Fourier Transform of the τ -length anal-
ysis window. In order to limit the computational time and to obtain
simple optimization rules, the spectral support of gτ is restricted
to its main lobe. For the experiments proposed in this paper, a
Hann window was used to compute the spectrograms. Its main lobe
magnitude spectrum (normalized to a maximal magnitude of 1) ex-
pression is given by gτ (fk) = 1

πτ
. sin(πfkτ)
fk−τ2f3k

, for fk ∈ [−2/τ, 2/τ ].

In order to estimate the parameters, the reconstruction cost-
function is chosen as the β-divergence between V and W θH:

C0(θ,H) =

K∑
k=1

T∑
t=1

dβ

(
Vkt |

R∑
r=1

W θr
kr ·Hrt

)
, (3)

with

dβ (x | y) = (xβ + (β − 1).yβ − β.x.yβ−1)/(β.(β − 1)). (4)

The family of β-divergences is widely used in audio application [15]
because it encompass three common metrics: an Euclidean distance
(β = 2), the Kullback-Leibler (β → 1) and the Itakura-Saito (β →
0) divergence.

2.2. Constraints on partial frequencies

• Strictly harmonic / Ha-NMF
The strict harmonic constraint consists in fixing:

fnr = nF0r, n ∈ N∗, (5)

directly in the parametric model (eq. (2)). Then, the set of parame-
ters for a single atom reduces to θHa

r = {anr, F0r | n ∈ [1, Nr]}.

• Strictly inharmonic / Inh-NMF
The strict inharmonic constraint consists in setting [13]:

fnr = nF0r

√
1 +Brn2, n ∈ N∗, (6)

that rules the partials frequencies of stiff strings with clamped ends.
Here, θInh

r = {anr, F0r, Br | n ∈ [1, Nr]}, and Br is called the
inharmonicity coefficient. It is dependent on the piano string design
and then differs from one piano to another but also from one key to
another. From the low bass to the high treble range it can vary from
around 10−5 to 10−2 [16].

• Inharmonic relaxed / InhR-NMF
An alternative way of enforcing inharmonicity is through an ex-

tra penalty term to the reconstruction cost function C0 [17]. Thus,
the global cost function can be expressed as:

C InhR(θ, γ,H) = C0(θ,H) + λ · C1(fnr, γ), (7)

where the set of parameters of the constraint is denoted by γ =
{F0r, Br | r ∈ [1, R]}. λ is a parameter that sets the weight be-
tween the reconstruction cost error and the inharmonicity constraint.
The constraint cost function C1 is chosen as the sum on each note of
the mean square error between the estimated partial frequencies fnr
and those given by the inharmonicity relation:

C1(fnr, γr) =

R∑
r=1

Nr∑
n=1

(
fnr − nF0r

√
1 +Brn2

)2
. (8)

A potential benefit of this relaxed formulation is to allow a slight de-
viation of the partial frequencies around the theoretical inharmonic-
ity relation, that is typically observed in the low frequency range due
to the coupling between the strings and the soundboard [13, 18].

3. TRANSCRIPTION ALGORITHM

3.1. NMF optimization

3.1.1. Multiplicative update rules

As commonly proposed in NMF modelling, the optimization is
performed iteratively, using multiplicative update rules. These are
obtained in a similar way to [9]. In the following, P (θ∗) and Q(θ∗)
refer to positive quantities obtained by decomposing the partial
derivative of a cost function C(θ) with relation to a particular pa-
rameter θ∗ so that ∂C(θ)

∂θ∗ = P (θ∗) −Q(θ∗). The parameter is then
updated as θ∗ ← θ∗ ·Q(θ∗)/P (θ∗).

The updates for H and anr are identical for the 3 models (Ha /
Inh / InhR), since these parameters only appear in C0 cost function.
The rule for H is similar to standard NMF with β-divergence [15]:

H ← H ⊗
tW θ

(
V̂ .[β−2] ⊗ V

)
tW θ V̂ ·[β−1]

, (9)

where t. corresponds to the transpose operator, and ⊗, .[], .
.
, to

entry-wise multiplication, exponentiation and division operators, re-
spectively. V̂ =W θH is the spectrogram model.
The rule for anr is obtained by a decomposition similar to [9]:

anr ← anr ·

∑
k,t

(gτ (fk − fnr).Hrt) .V̂ β−2
kt .Vkt∑

k,T

(gτ (fk − fnr).Hrt) .V̂ β−1
kt

. (10)

Then, update rules of the remaining parameters are specific for each
of the three different NMF models. In the following, g′τ (fk) rep-
resents the derivative of gτ (fk) with respect to fk on the spectral
support of the main lobe. For a Hann window (normalized to a max-
imal magnitude of 1) and fk ∈ [−2/τ, 2/τ ]:

g′τ (fk) =
1

πτ

(3τ2f2
k − 1) sin(πτfk) + πτ(fk − τ2f3

k ) cos(πτfk)

(fk − τ2f3
k )

2
.

• Ha-NMF / Inh-NMF

F0r
Ha / Inh← F0r ·

Q0(F0r)

P0(F0r)
, (11)

Br
Inh← Br ·

QInh
0 (Br)

P Inh
0 (Br)

, (12)
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with

P0(F0r) =
∑
k,t

[(
Nr∑
n=1

anr
−C.fk.g′τ (fk−fnr)

fk−fnr
.Hrt

)
.V̂ β−1
kt

+

(
Nr∑
n=1

anr
−C.fnr.g′τ (fk−fnr)

fk−fnr
.Hrt

)
.V̂ β−2
kt .Vkt

]
(13)

Q0(F0r) =
∑
k,t

[(
Nr∑
n=1

anr
−C.fk.g′τ (fk−fnr)

fk−fnr
.Hrt

)
.V̂ β−2
kt .Vkt

+

(
Nr∑
n=1

anr
−C.fnr.g′τ (f−fnr)

fk−fnr
.Hrt

)
.V̂ β−1
kt

]
(14)

P Inh
0 (Br) =

∑
k,t

[(
Nr∑
n=1

anr
−D.fk.g′τ (fk−fnr)

fk−fnr
.Hrt

)
.V̂ β−1
kt

+

(
Nr∑
n=1

anr
−D.fnr.g′τ (fk−fnr)

fk−fnr
.Hrt

)
.V̂ β−2
kt .Vkt

]
(15)

QInh
0 (Br) =

∑
k,t

[(
Nr∑
n=1

anr
−D.fk.g′τ (fk−fnr)

fk−fnr
.Hrt

)
.V̂ β−2
kt .Vkt

+

(
Nr∑
n=1

anr
−D.fnr.g′τ (f−fnr)

fk−fnr
.Hrt

)
.V̂ β−1
kt

]
. (16)

For the strict harmonic model (Ha-NMF), fnr = nF0r and
C = ∂fnr/∂F0r = n. For the strict inharmonic model (Inh-NMF),
fnr = nF0r

√
1 +Brn2, C = ∂fnr/∂F0r = n

√
1 +Brn2, and

D = ∂fnr/∂Br = n3F0r/2
√
1 +Brn2.

• InhR-NMF:

fnr
InhR← fnr ·

QInhR
0 (fnr) + λ ·QInhR

1 (fnr)

P InhR
0 (fnr) + λ · P InhR

1 (fnr)
, (17)

Br
InhR← Br ·

QInhR
1 (Br)

P InhR
1 (Br)

, (18)

F0r
InhR
=

Nr∑
n=1

fnrn
√
1 +Brn2

Nr∑
n=1

n2(1 +Brn2)

, (19)

where

P InhR
0 (fnr) =

∑
k,t

[(
anr

−fk.g′τ (fk−fnr)
fk−fnr

.Hrt
)
.V̂ β−1
kt

+
(
anr

−fnr.g′τ (fk−fnr)
fk−fnr

.Hrt
)
.V̂ β−2
kt .Vkt

]
, (20)

QInhR
0 (fnr) =

∑
k,t

[(
anr

−fk.g′τ (fk−fnr)
fk−fnr

.Hrt
)
.V̂ β−2
kt .Vkt

+
(
anr

−fnr.g′τ (f−fnr)
fk−fnr

.Hrt
)
.V̂ β−1
kt

]
, (21)

P InhR
1 (fnr) = 2fnr , QInhR

1 (fnr) = 2nF0r

√
1 +Brn2, (22)

P InhR
1 (Br) = F0r

Nr∑
n=1

n4, QInhR
1 (Br) =

Nr∑
n=1

n3fnr√
1+Brn2

. (23)

Note that for F0r , an exact analytic solution is obtained (eq.
(19)) when cancelling the partial derivative of the cost function C1.

3.1.2. Practical considerations

• Amplitude normalization: In order to obtain a unique decomposi-
tion, the anr are normalized to a maximal value of 1 for each atom

indexed by r. Thus, after each update ∀r ∈ [1, R] and ∀n ∈ [1, Nr]
of the anr , the following steps are applied:

Ar = max
n∈[1,Nr ]

(anr), ∀r ∈ [1, R],

anr = anr/Ar, ∀r ∈ [1, R], ∀n ∈ [1, Nr], (24)
H = diag(A) ·H ,

where diag(A) is a diagonal matrix of dimension R×R containing
the Ar , ∀r ∈ [1, R].

• Algorithms: The steps of InhR-NMF algorithm are summarized in
table Algorithm 1. Ha-NMF and Inh-NMF algorithms are not given
in this paper but are highly similar to InhR-NMF: instead of updating
fnr , then F0r and Br in lines 12-18, F0r (Ha-NMF) or F0r and Br
(Inh-NMF) are directly updated and W θ recomputed.

Algorithm 1 InhR-NMF optimization

1: Input: V mag. spectrogram (normalized to a max. value of 1)

2: Initialization: ∀ r ∈ [1, R], n ∈ [1, Nr],
3: > (Br, F0r), then fnr = nF0r

√
1 +Brn2 / anr = 1

4: >W θ (cf. eq (2)) / H ini. with rand. positive values
5: > β / λ

6: Optimization:
7: for it = 1 to I do
8: > H update (eq. (9))
9: > anr update ∀ r ∈ [1, R], n ∈ [1, Nr] (eq. (10))

10: anr normalization and H update (eq. (24))
11: W θ update (eq. (2))
12: > fnr update ∀ r ∈ [1, R], n ∈ [1, Nr] (eq (17))
13: W θ update (eq. (2))
14: for u = 1 to 30 do
15: ∀r, n ∈ Nr
16: > F0r update (cf. eq (19))
17: > Br update (20 times) (cf. eq (18))
18: end for
19: end for
20: Output: H , anr , fnr , Br , F0r

3.2. Post-processing

In order to obtain a list that contains the detected notes, their onset
and offset time, a post-processing is applied to the activation matrix
H . Each line is processed by a low-pass differentiator filter. The
obtained matrix dH is then scaled so that its maximal element is 1.
Finally, in each line, an onset is detected if dH is above a threshold
10Ton/20, and the corresponding offset found when dH crosses (from
negative to positive values) a second threshold −10Toff/20 < 0. If
the same note is found to be repeatedly played at less than 100 ms
of interval it is then considered as a unique note. As discussed in
the introduction, this very simple post-processing has been chosen
in order to better highlight the differences in the model itself.

4. TRANSCRIPTION EVALUATION

4.1. Protocol

The three models have been tested on the MAPS database1. 45
pieces were randomly chosen (5 out of 30 for each of the 9 pianos),

1http://www.tsi.telecom-paristech.fr/aao/en/category/database/
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re-sampled to 22050 Hz, and 30 seconds excerpts were taken start-
ing from t0 = 5 s. The mean polyphony level by time-frame is about
3.23. In order to estimate an appropriate value for the parameter λ
of the InhR-NMF method, a learning set composed of 9 pieces was
similarly built (1 piece for each piano, none of them in the test set).
The spectrograms were computed with a Hann window of length
τ = 90 ms, with a hope–size of τ/8 and a 213-point FFT. The num-
ber of spectra in the dictionary was fixed to R = 64, and initialized
for notes having MIDI note number in [33, 96]. Usually the piano
keyboard contains 88 notes, from A0 (21) to C8 (108). Our choice
corresponds to a reduction of one octave in the extreme bass (where
the spectral resolution is not sufficient to perform the analysis) and
one octave in the high treble range (where the non-linear coupling
between triplets of strings at the soundboard [18] produces complex
spectra with multiple partials that cannot be fully explained by a
simple harmonic or inharmonic model). However, these notes in the
extreme parts of the keyboard are rarely played. Over the complete
MAPS dataset (352710 notes for 159 different pieces), they only ac-
count for 1.66% of the notes.

For Ha-NMF, F0r is initialized to exact equal temperament. For
Inh-NMF and InhR-NMF two initializations are tested. The first one
sets F0r to equal temperament (no “octave stretching”) and Br to
5.10−3, ∀r ∈ [1, R]. The second one is based on an average model
of inharmonicity and tuning on the whole piano tessitura considering
invariants in piano string design and tuner choices [16].

The experiments are run for β = 1 (KL divergence), 150 itera-
tions and different values of Nr , the number of partials of the atoms
(from 5 to 30). For the post-processing, the onset detection thresh-
old Ton is varying from -80 to -1 dB in steps of 1 dB, and the offset
detection threshold is fixed to -80 dB.

4.2. Results and discussion

For each excerpt, performances are evaluated in terms of Precision
(P), Recall (R) and F-measure (F) [19] (one note is assumed to be
correctly detected if for a given pitch, the estimated onset time is
contained in +/-50 ms interval around the ground truth). Mean and
standard deviation are then computed on the whole dataset.

On the learning database, the influence of λ parameter of InhR-
NMF with Nr = 10 has been studied on a grid covering the range
[10−6, 100] and logarithmically distributed. The optimal F-measure
was obtained for λ = 1, and it should be noted that the performance
did not depend on a fine tuning of this parameter.

The performances obtained on the test database are presented in
table 4.2 for all the methods and for Ton=-18 dB (the influence of
Ton is depicted in figure 1 for Ha/Inh2/InhR2-NMF and Nr = 20).
Standard deviations are not reported in the table but are around 10 to
14 %. For each method, increasing the number of partials Nr leads
to higher performances. It seems that adding more partials avoids
a situation where high notes explain high rank partials belonging to
lower notes. Ha-NMF results for Nr = 30 are comparable to those
obtained by the NMF under the harmonicity constraint presented in
[20] (section V.B) for similar experimental setups.

For the first initialization, Inh-NMF and InhR-NMF perform less
than Ha-NMF (this is consistent with the observation in [14]). Con-
versely, for the second initialization with the mean model of in-
harmonicity and piano tuning, these methods perform significantly
better than Ha-NMF (ANOVA p-values lower than 0.05 for Nr <
30). Furthermore, both inharmonic models give comparable mean
F-measures (p-values higher than 0.5).

This tends to demonstrate that such strategies are highly depen-
dent on the initialization. Indeed, the reconstruction cost function

Nr 5 10 20 30

Ha
P 39.3 51.9 58.9 62.1
R 41.0 49.3 56.6 60.6
F 38.7 49.0 55.9 59.7

Inh
1

P 32.6 44.6 54.9 55.6
R 34.5 46.0 56.7 57.7
F 32.4 43.8 54.0 54.8

InhR
1

P 34.0 43.0 53.4 55.2
R 36.0 44.9 55.7 57.1
F 33.7 42.6 52.7 54.4

Inh
2

P 44.3 59.6 66.4 66.9
R 45.1 55.9 60.9 62.5
F 43.0 55.8 61.5 62.6

InhR
2

P 43.3 57.5 64.1 64.6
R 45.2 54.9 60.3 61.1
F 42.5 54.1 60.2 60.7

Table 1. Mean Precison, Recall and F-measure, in %, as a function
of Nr for Ha/Inh/InhR-NMF algorithms, for Ton= -18 dB. Index 1
and 2 refer to the two different initializations of Br and F0r .
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Fig. 1. F-measure as a function of the onset detection threshold
Ton ∈ [−40,−1] for Ha/Inh2/InhR2-NMF methods and Nr = 20.

C0 is non-convex with respect to fnr , F0r or Br parameters, and
present a large amount of local minima (this has been checked by
computing the cost function on a grid of these parameters). Hence,
multiplicative update rules (as well as other optimization methods
based on gradient descent) cannot ensure that these parameters will
be correctly estimated. Regarding the results, taking into account the
dispersion of the partial frequencies from a theoretical inharmonic
relation in InhR-NMF does not seem valuable, when compared to
Inh-NMF.

5. CONCLUSION

Including inharmonicity in parametric NMF models has been shown
to be relevant in a piano transcription task, provided that the in-
harmonicity and tuning parameters are sufficiently well initialized.
More precisely, an initialization with the same average value for the
inharmonicity of all notes, and equal temperament for the tuning,
turns out to provide worse estimates than the simpler purely har-
monic model. However, a note-dependent inharmonicity law, with
fixed parameters, and the corresponding “stretched” tuning curves,
provide a good initialization to our models, that lead to significant
improvement in the transcription results. Further work will investi-
gate how these models on partials frequencies can be combined with
amplitude models (smooth spectral envelopes), or frame dependen-
cies in time.
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