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ABSTRACT

We introduce a novel method for the transcription of polyphonic
piano music by discriminative training of support vector machines
(SVMs). As features, we use pitch activations computed by su-
pervised non-negative matrix factorization from low-level spectral
features. Different approaches to low-level feature extraction, NMF
dictionary learning and activation feature extraction are analyzed in a
large-scale evaluation on eight hours of piano music including syn-
thesized and real recordings. We conclude that the proposed method
delivers state-of-the-art results and clearly outperforms SVMs using
simple spectral features.

Index Terms— Transcription, sparse coding, non-negative ma-
trix factorization, music information retrieval

1. INTRODUCTION

Transcription of polyphonic music is one of the key applications in
music information retrieval [1, 2], as it converts unstructured wave-
form data to a symbolic, musically meaningful representation. In this
work, we formulate the problem of polyphonic music transcription as
joint onset detection and multi-pitch estimation, where note onsets
have to be detected along with the correct pitch.

A popular approach to multi-pitch estimation and polyphonic
music transcription is based on non-negative matrix factorization
(NMF) applied to the spectrogram, modeling the short-time spectra
of the signal frames as linear combinations of dictionary atoms with
non-negative activation coefficients [3–7]. In many approaches, both
the atoms and their time-varying activation coefficients are estimated
jointly by the expectation-maximization principle in an unsupervised
fashion [8]. However, without further constraints it cannot be guar-
anteed that the atoms resulting from this procedure have an actual
musical meaning (e. g., representing different pitches of different
instruments). As a result, interpretation of the atoms and their acti-
vations, and hence transcription based on the NMF decomposition
itself, can become challenging. Introducing musical constraints into
NMF, such as in [9, 10], appears to be promising, yet from the re-
sults it seems that transcription using purely NMF (and hence, max-
imum likelihood) based techniques remains a notoriously difficult
task [9, 10].

As an alternative, discriminative approaches [11–15] have been
proposed, delivering most robust results [13]. In discriminative music
transcription, a classifier is trained on positive and negative examples
corresponding to signal frames where a given pitch is present or
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absent. This can be done in a ‘one-versus-all’ training paradigm
for pitch-specific classifiers as in this study, based on the principle
of [12], or in a multi-task learning fashion as in [13]. These paradigms
avoid the combinatorial explosion reported by [16] when all possible
combinations of pitches are modeled as classes.

To combine the benefits of discriminative training with explicit
signal decomposition and information reduction by NMF, we use
the NMF activations computed from onset and non-onset parts as
positive and negative data points for the SVM classifier. In order
to avoid matching of unsupervisedly estimated dictionary atoms to
pitches, we employ supervised NMF where spectra corresponding
to pitch-instrument pairs are pre-defined. As a result, the method is
capable of low delay on-line processing, in contrast to unsupervised
or weakly supervised approaches [17]. As in many previous studies
[3, 12–14, 16] we limit ourselves to piano music—the main reason
being that for this task, large annotated evaluation databases are
available. In the ongoing, we will first describe our approach in detail
before discussing parameterization, evaluation databases and metrics,
and presenting experimental results.

2. METHODOLOGY

A flowchart of the proposed method is given in Figure 1. As a first
step, the audio signal is converted to the time-frequency domain by
either short-time Fourier transformation (STFT) or by the constant
Q transformation (CQT) [18]. The time-frequency representation
is mapped to frame-wise activations of note templates by means of
supervised NMF. From these ‘raw’ activations, we derive ‘high level’
activation features which are then fed into a set of support vector
machine (SVM) classifiers that perform onset detection for each pitch-
instrument pair. The frame level decisions of these classifiers are
finally post-processed by a simple clustering method. Starting from
this broad picture, let us now flesh out the details of each processing
step.

2.1. Calculation of the NMF Activation Matrix

The magnitude of the time-frequency spectrogram (STFT or CQT)
is computed, yielding a non-negative matrix X

′
(with observations

in columns). This matrix is then ‘down-sampled’ by a factor Nc by
merging time steps, yielding a matrix X:

Xt = max{X
′
(t−1)Nc+1, . . . ,X

′
tNc
} (1)

Then, NMF is applied to decompose X into the two factors W and
H; the first one represents note templates and the second one the
activity of notes over time. In our supervised NMF approach, the
matrix W is pre-computed in a training phase (cf. the following
section); during the transcription phase, only the matrix H has to
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Fig. 1: Overview of the proposed transcription method, consisting of
low-level spectral feature extraction, calculation and post-processing
of NMF activation features, classification by support vector machines
and decision level post-processing.
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be calculated. To this end, a given cost function c is minimized
iteratively by a multiplicative update algorithm. In this study, we use
the Kullback-Leibler divergence d(·|·), i. e.,

c(H) = d(X|WH).

Starting from a random solution for H, the update rule

Ht ← Ht ⊗
WT (Xt/WHt)

WT1
(2)

is applied until the solution has converged or a maximum number
of K iterations has been reached. There, 1 denote an all-one matrix
of the appropriate dimensions, and the subscript t represents the t-
th column of a matrix. ⊗ and / indicate element-wise operations.
It is important to note that the frame-wise rule (2) is equivalent to
the standard multiplicative update algorithm [19], but makes the
supervised NMF algorithm suitable for on-line processing, since the
matrix W is constant [17].

2.2. Base Matrix Estimation

In order to build the matrix W, we exploit NMF in a weakly su-
pervised fashion as follows. We assume that there are recordings of
isolated notes available for the instrument we want to transcribe (one
per pitch). Then, ‘characteristic spectra’ for each of these notes are
calculated from the spectrograms Xp, where p is the pitch index. A
naı̈ve approach is to simply apply unsupervised NMF on Xp, using
a rank r of 1 and keeping the first factor (i. e., a column vector) as
dictionary atom for pitch p. However, since we are mostly interested
in detecting the onsets of the notes, we can also use an onset sharpen-
ing method to extract spectra representing the attack and the decay
phases of a note, motivated by the observations made by [20] in the
context of weakly supervised NMF on piano music. In our approach,
we consider the activations per frame t, obtained by unsupervised
NMF, as a row vector a, and compute the maximum activation a∗

and its position t∗. Then, we set the frame index t′ to the first frame
after the maximum (t′ > t∗) where

at′ < σ · a∗ (3)

We then obtain an ‘onset atom’ by applying unsupervised NMF only
on the first t′ columns of Xp. Analogously, from the rest of Xp

we obtain a ‘decay atom’. We will evaluate the usage of onset and
decay atoms later. Finally, the matrix W is simply the column-wise
concatenation of the atom(s) estimated per pitch p, normalized to
unity L2 norm per column.

2.3. Activation Post-Processing

Before performing onset detection on the NMF activations, a three-
step post-processing stage is applied. First, the activations are

summed up for each pitch p in case that multiple dictionary atoms per
pitch are used. The outcome of this step will be denoted by h(t) in the
ongoing, and its components by hp(t). Second, since we found that
certain pitches had overall higher activations than others despite the
normalized atoms in W, we apply an ‘inverse document frequency’
normalization to the activation vectors per time step:

hp(t)← hp(t)/wp, ∀p

where wp is the average activation of pitch p when NMF is applied to
the training data. Finally, h(t) is normalized by its L1 norm adding a
constant cn:

h(t)← h(t)/(cn + ‖h(t)‖1)
The constant cn is needed because a naı̈ve normalization would yield
erroneous activations for segments without onsets. In the ongoing
cn = 6 will be used.

2.4. Activation Feature Extraction

In a baseline approach, we use a single activation difference feature
per pitch. Precisely, defining Tspan(t) as the set of frame indices
corresponding to the span in milliseconds after the frame with index
t, we compute

f1(hp(t)) = hp(t)− max
t′∈T−50(t)

hp(t
′),

i. e., the difference of the current activation to the maximum activation
within the last 50 milliseconds.

Besides, we consider a multi-dimensional feature set adding

f2(hp(t)) = max
t′∈T50(t)

hp(t
′)− min

t′∈T−50(t)
hp(t

′),

f3(hp(t)) = hp(t)− min
t′∈T−100(t)

hp(t
′),

f4(hp(t)) = max
t′∈T100(t)

hp(t
′),

f5(hp(t)) = min
t′∈T−100(t)

hp(t
′), and

f6(hp(t)) = max
t′∈T250(t)

hp(t
′)− hp(t).

2.5. Classification and Onset Detection

For each pitch p, a support vector machine (SVM) classifier is trained
on a labelled set of feature vectors {ft}. For the multi-dimensional
feature set, f(t) = (f1(t), . . . , f6(t))

T . In case of the single-
dimensional feature set, we also use a SVM for consistency—this cor-
responds to a threshold decision on activation differences, where the
threshold is optimized by a maximum margin criterion on the training
data. To obtain a set of positive examples for the SVM, we use feature
vectors inside a detection window of 100 ms around the ground truth
that have a maximum acceleration of the activation, since rising acti-
vations indicate onsets and an attack phase may include several points
of rising activations. Mathematically, we add (f(t∗), 1) to the training
set with t∗ = argmaxt{hp(t)−hp(t−1)−(hp(t−1)−hp(t−2))}.
Negative examples are taken from intervals outside the detection win-
dow. To reduce redundancy caused by many similar data points
representing silence, all data points yielding an activation difference
less than the average are discarded with a probability close to one.
Still, the above procedure yields a large training set. For example,
the training set introduced in Section 3.1 corresponds to 14 h of mu-
sic, resulting in 2.5 million data points. For efficiency reasons, and
since usage of non-linear SVM kernels did not significantly improve
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Table 1: Evaluation databases: MIDI, MAPS MIDI and MAPS
D(isklavier). Total recording lengths of the partitions given in
hours:minutes:seconds.

Dataset Partition # pieces # notes Length
MIDI training 200 519 477 14:18:18

validation 26 59 835 1:59:33
test 1 35 71 242 2:20:03
test 2 23 58 223 1:25:05

MAPS MIDI training 155 334 974 9:41:18
validation 21 48 921 1:45:23
test 1 23 36 075 1:23:47
test 2 11 41 018 0:54:04

MAPS D training 36 86 010 2:23:56
validation 6 16 487 0:43:21
test 1 3 5 675 0:11:08
test 2 15 46 180 1:03:17

transcription results, classifier training is done with LibLinear [21],
providing an efficient method to train linear SVM.

After obtaining a classifier decision for each time step, we com-
pute the onset timing by a ‘clustering’ step on the ‘raw’ decisions. A
cluster is defined by a set of positively classified data points, such that
there is no negatively classified data point between two points of the
set, and the two neighboring data points around this set are classified
as negative. We predict an onset at the mid-point of each cluster.

3. EXPERIMENTAL SETUP

3.1. Evaluation

We use the MIDI database introduced in [12] and the MAPS (MIDI
Aligned Piano Sounds) database [16]. The MIDI database consists of
MIDI files collected from the Classical Piano MIDI Page1. The MIDI
files are converted to waveforms with a sampling rate of 44.1 kHz
using the freely available Maestro Concert Grand v2 sound font2.
The MAPS database consists of synthesized music as well as real
piano recordings. The first part (MAPS MIDI) is created with dif-
ferent software synthesizers, configurations and virtual recording
conditions. The second part (MAPS D) dataset contains music played
by a Yamaha Disklavier Mark III in realistic recording conditions
(‘ambient’ and ‘close’). For a detailed description of the database we
refer to [16]. We treat the Disklavier part of the MAPS database as an
individual corpus, since these are the only recordings of a real piano
in the data sets considered.

For NMF, an instrument-dependent W matrix is built using iso-
lated notes in the training sets of the databases; in case of the MIDI
database, some missing isolated notes were synthesized using the
above-mentioned sound font. Onset classifiers are trained on the
activation features computed from the union of the training and vali-
dation sets. Statistics of the individual data sets are shown in Table
1. We use the same partitioning into training, validation and test sets
as [12, 13]. However, note that [13] restricted their evaluation on the
test set to a subset for which the alignments were manually verified
(testing 1); we additionally evaluate on the full test set (testing 1 ∪ 2)
which may contain alignment errors.

As our main evaluation measure, we choose accuracy which was
introduced by [22] for onset detection and later picked up by [13]
for polyphonic transcription. Accuracy is defined as TP / (TP + FP +

1http://www.piano-midi.de
2http://www.linuxsampler.org/instruments.html

Table 2: Threshold detection (1-dimensional SVM using f1(t)) vs.
SVM using 6-dimensional features (f(t)), Nc = 2: Accuracy and
F-measure (Fm).

[%] MIDI MAPS MIDI MAPS D
Acc. Fm Acc. Fm Acc. Fm

1-dim. 62.4 76.8 72.5 84.0 45.1 62.2
6-dim. 74.3 85.3 79.4 88.5 68.0 81.0

FN), where TP is the number of true positives, i. e., notes identified
with the correct pitch within a symmetric window around the ground
truth onset time, FP is the number of false positives (i. e., a note of
the wrong pitch is detected), and FN is the number of false negatives
(i. e., a note is missing in the transcript). This is a somewhat ‘harsh’
measure, as it counts substitutions, i. e., pitch errors, twice (one false
negative for the correct pitch and one false positive for the incorrect
pitch). Additionally, we use the standard F-measure, which is the
harmonic mean of recall (TP / (TP + FN)) and precision (TP / (TP
+ FP)) following the notion of TP, FN and FP introduced above.
Following [12], the window of correct detection is set to 100 ms
(ground truth timing ± 50 ms).

As a rule of thumb for the observed ranges of accuracy, accuracy
improvements of more than one percent are statistically significant at
the 0.1 % level according to a one-tailed z-test [23] with the number
of instances corresponding to the number of notes in the data set.

3.2. Parameterization

For the STFT, a window size of 3 072 samples and a step size of 512
samples are used as in a previous study using spectral features [12].
For CQT, we use the toolbox3 presented in [18], using 24 bins per
octave over seven octaves and the default parameters for window size
and step size. NMF is applied for up to K = 200 iterations.

4. RESULTS AND DISCUSSION

In a first step, we evaluate the usefulness of our 6-dimensional feature
set f(t) as opposed to a simple threshold decision (1-dimensional
SVM) based on the NMF pitch activation differences f1(t). The
accuracies and F-measures resulting from either method are shown in
Table 2. We observe that for all three of the data sets, both measures
are drastically increased by the proposed 6-dimensional feature set.
This especially holds for the MAPS Disklavier set of real piano
recordings, where 22.9 % absolute accuracy and 18.8 % F-measure
are gained. As we generally observed very similar trends for accuracy
and F-measure in our evaluations, we will focus on accuracy in the
ongoing. Next, we evaluate the proposed merging of frames in the
spectrogram matrix by the maximum operator (cf. Eqn. (1)). From
the accuracies displayed in Figure 2, it can be seen that this technique
consistently improves the performance over the baseline (no merging,
Nc = 1), and best results are achieved by setting Nc = 4.

Next, in Figure 3, we evaluate the influence of the spectral rep-
resentation (CQT or STFT). We cannot observe any improvement
by using CQT instead of STFT, even if we increase the factor Nc

respecting fact that the frame step chosen for CQT is larger than for
STFT. In fact, the accuracy is significantly lower when using CQT
rather than STFT spectra as input for the NMF step. This is probably
because the linear scaling of frequency bins in the STFT domain
provides better discrimination of pitches from different octaves. In
the ongoing, STFT features will be used.

3Software available at http://www.elec.qmul.ac.uk/people/anssik/cqt
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Fig. 2: Effect of frame merging in the X matrix: Accuracy for
different values of Nc (1), on test sets 1 ∪ 2.
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Fig. 3: Effect of spectral features: Accuracy using STFT vs. Constant-
Q-Transform (CQT), for different values of Nc (1), on test sets 1 ∪ 2.
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Fig. 4: Effect of dictionary size (r atoms per pitch) and onset sharp-
ening (σ = 0.8, cf. (3)) on accuracy; evaluation on test set 1.
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Finally, the method is evaluated using different dictionary sizes
(r = 1, 2 atoms per pitch), and optionally using onset sharpening
(σ = 0.8) to subdivide the training notes into attack and decay phase.
For σ = 0.8 and r = 1, only the attack (onset) atoms are used. Re-
sults of the evaluation on the testing 1 set (for comparability with [13])
are shown in Figure 4. If we do not use onset sharpening, the num-
ber of atoms in the NMF dictionary only changes the outcome on
the MIDI dataset (by 1 % absolute accuracy). Notably, the standard
unsupervised NMF approach is outperformed by the proposed on-
set sharpening method, which delivers best results on each database.
This indicates the usefulness of prior knowledge in the NMF dic-
tionary learning process. However, on MAPS MIDI, we can only
improve results over the baseline (r = 1, no onset sharpening) if we
increase the dictionary size (and thereby computational complexity)
by including the decay atoms as well. Note that the dictionary size
does not influence the number of features in classification, so that
the performance improvement by using r = 2 cannot be attributed
simply to having more features.

We now compare our results (with r = 2, σ = 0.8) to the state-
of-the-art in terms of accuracy, and display the results in Table 3.

Table 3: Comparison of algorithms on testing 1 set. 1: Instrument-
dependent training; 2: Multi-instrument (closed-set) training.

Accuracy [%] MIDI MAPS MIDI MAPS D
SVM1 [12] 62.3 – –
BLSTM2 [13] 88.9 84.0 68.7
Boosting1 [14] 87.4 – –
Proposed (NMF+SVM)1 77.1 86.3 77.1

On the MIDI dataset, the proposed NMF+SVM method evidently
delivers significantly higher accuracy (+ 14.8 % abs.) than the SVM
method based on spectral features proposed by [12]. However, the
method is outperformed by the boosting and BLSTM approaches
proposed by [13, 14], respectively. We believe that this is due to
our independent training of pitch-specific classifiers, and our method
could be improved by exploiting the correlations of pitch activations,
such as chord structures in tonal music. On the MAPS data set, our
method is evidently superior to the results obtained by [13] (+2.3 %
abs. on MIDI and +8.6 % on real piano). Yet, these results are not
fully comparable since [13] uses a ‘closed set’ experimental setup
where training data is collected from all pianos in the databases,
and it is not known which piano is played in which test instance,
whereas our results, similarly to the ones in [12, 14] are evaluated in
an instrument-dependent setup.

We note, however, that we have good reason to believe that NMF
provides a convenient and effective method to perform transcription
in a closed set setup, by building a joint W matrix of the instrument-
dependent bases, performing supervised NMF and then selecting
the base with the highest overall activation for transcription. In a
preliminary experiment, 83 % average recall of the ten pianos in
the test databases could be achieved by deciding for the instrument
whose base had the highest activation sum, respecting instrument-
wise group sparsity constraints on the activations in analogy to the
method proposed by [24] for speaker identification.

5. CONCLUSIONS AND OUTLOOK

We have presented an effective and efficient method for the task
of polyphonic piano transcription, jointly performing multi-pitch
estimation and onset detection based on NMF activation features
and discriminative one-versus-all classification by SVM. The pro-
posed method delivered state-of-the-art results on three test databases
comprising synthesized MIDI as well as real piano recordings. Fu-
ture work will combine the proposed feature extraction method with
context modeling and multi-task learning by unidirectional LSTM
networks to provide a real-time capable method using a small-sized
feature set as output by NMF.

6. RELATION TO PRIOR WORK

Seminal work on NMF for polyphonic music transcription has been
presented by [3, 4]. An example for non-pitched sound transcription
(drums) by NMF is presented by [25]. [9, 10] introduce musically
motivated constraints to unsupervised NMF for music transcription.
[12, 14] perform discriminative transcription by classifying simple
spectral features. [15] proposes unsupervised feature generation for
classification-based transcription but does not use source separation
based features as by NMF. [13] uses context information and multi-
task learning by a neural network using spectral features, achieving
overall best results so far on the piano transcription task.
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