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ABSTRACT

We propose an innovative approach for music description at several
time-scales in a single unified formalism. More specifically, chord
information at the analysis-frame level and global semantic structure
are integrated in an elegant and flexible model. Using Markov Logic
Networks (MLNs) low-level signal features are encoded with high-
level information expressed by logical rules, without the need of a
transcription step. Our results demonstrate the potential of MLNs for
music analysis as they can express both structured relational knowl-
edge through logic as well as uncertainty through probabilities.

Index Terms— Music Information Retrieval, Markov Logic
Networks, Chord Detection, Structure Analysis

1. INTRODUCTION

Music audio signals are very complex, both because of the intrinsic
nature of audio, and because of the information they convey. Signal
observations are generally incomplete and noisy. Besides, the great
variability of audio signals, due to the many modes of sound produc-
tion and the wide range of possible combinations between the vari-
ous acoustic events, make music signals extremely rich and complex
from a physical point of view. Music audio signals are also complex
from a semantic point of view and convey multi-faceted and strongly
interrelated information (e.g. harmony, metric, structure, etc.).

The extraction of relevant content information from audio sig-
nals of music is one of the most important aspects of Music In-
formation Retrieval (MIR). Although there is a number of existing
approaches that take into account interrelations between several di-
mensions in music (e.g. [1, 2]), most existing computational mod-
els extracting content information tend to focus on a single music
attribute, which is contrary to the human understanding and percep-
tion of music that processes holistically the global musical context
[3]. Dealing with real audio recordings thus requires the ability to
handle complex relational and rich probabilistic structure at multiple
levels of representation. Existing approaches for musical retrieval
tasks fail to capture both of these aspects.

Probabilistic graphical models are popular for music retrieval
tasks. In particular Hidden Markov models (HMM) have been quite
successful in modeling various tasks where objects can be repre-
sented as sequential phenomena, such as in the case of chord esti-
mation [4] or beat tracking [5]. However, an important limitation of
HMMs is that it is hard to express dependencies in the data. HMMs
make the Markovian assumption that each frame only depends on the
preceding one. Other formalisms that allow considering more com-
plex dependencies between data in the model have been explored,
such as conditional random fields [6], N-grams [7, 8] or tree struc-
tures [2]. Although probabilistic models can handle the inherent un-
certainty of audio, most of them fail to capture important aspects of
higher-level musical relational structure and context. This aspect has
been more specifically explored within the framework of logic.

A major advantage of the logic framework is that its expressive-
ness allows modeling music rules in a compact and human-readable
way, thus providing an intuitive description of music. knowledge,
such as music theory, can be introduced to construct rules that re-
flect the human understanding of music [9]. Another advantage is
that logical inference of rules allows taking into account all events
including those which are rare [10]. Inductive Logic Programming
(ILP) [11] refers to logical inference techniques that are subset of
First-Order Logic (FOL). These approaches combine logic program-
ming with machine learning. They have been widely used to model
and learn music rules, especially in the context of harmony charac-
terization and in the context of expressive music performance. Ap-
proaches based on logic have focused on symbolic representations
such as the MIDI file format, rather than on audio.

In the context of harmony characterization, pattern-based first-
order inductive systems capable of learning new concepts from ex-
amples and background knowledge [12], or counterpoint rules for
two-voice musical pieces in symbolic format [13] have been pro-
posed. An inductive approach for learning generic rules from a set
of popular music harmonization examples to capture common chord
patterns is described in [14]. Some ILP-based approaches for the
automatic characterization of harmony in symbolic representations
[15] and classification of musical genres [16] have been extended to
audio [17]. However, they require a transcription step, the harmony
characterization being induced from the output of an audio chord
transcription algorithm and not directly from audio. In the context
of expressive music performance, algorithms for discovering general
rules that can describe fundamental principles of expressive music
performance [18, 19, 20, 9] have also been proposed. The inductive
logic programming approaches are not directly applied to audio, but
on symbolic representations. This generally requires a transcription
step, such as melody transcription [9].

Real data such as music signals exhibit both uncertainty and rich
relational structure. Until recent years, these two aspects have been
generally treated separately, probability being the standard way to
represent uncertainty in knowledge, while logical representation be-
ing used to represent complex relational information. Music retrieval
tasks would benefit from a unification of logical and probabilistic
knowledge representations. As reflected by previous works, both as-
pects are important in music, and should be fully considered. How-
ever, traditional machine learning approaches are not able to cope
with rich relational structure, while logic-based approaches are not
able to cope with the uncertainty of audio and need a transcription
step to apply logical inference on a symbolic representation. Ap-
proaches towards a unification have been proposed within the emerg-
ing field of Statistical Relational Learning (SRL) [21]. They com-
bine first order logic, relational representations and logical inference,
with concepts of probability theory and machine learning [22].

Many models in which statistical and relational knowledge
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are unified within a single representation formalism have emerged
[23, 24, 25]. Among them, Markov Logic Networks (MLNs) [26],
which combine first-order logic and probabilistic graphical models
(Markov networks) have received considerable attention in recent
years. Their popularity is due to their expressiveness and simplicity
for compactly representing a wide variety of knowledge and reason-
ing about data with complex dependencies. Multiple learning and
inference algorithms for MLNs have been proposed, for which open-
source implementations are available, for example the Alchemy1 and
ProbCog 2 software packages. MLNs have thus been used for many
tasks in artificial intelligence (AI), such as meaning extraction [27],
collective classification [28], or entity resolution [29].

We are interested in providing a multi-level description of music
structure, at the analysis frame, phrase and global structure scale, in
which information specific to the various strata interact. This paper
presents some steps towards this direction. In traditional computa-
tional models, it is not easy to express dependencies between various
semantic levels. In [30], we have introduced MLNs as a highly flexi-
ble and expressive formalism for the analysis of music audio signals,
showing that chord and key information can be jointly modeled into
a single unified MLN model. In this work we show that the MLNs
framework can be further explored to integrate information at differ-
ent time scales within a single formalism.

More specifically, we consider here the problem of modeling the
harmonic progression of a music signal at the analysis-frame level,
taking into account a more global semantic level. A number of works
focus on the task of automatic analysis of the musical structure from
audio signals, see e.g. [31, 32, 33, 34]. Music pieces are structured at
several time scales, from musical phrases to longer sections that gen-
erally have multiple occurrences (with possible variations) within the
same musical piece. Each segment type can be categorized and dis-
tinguished from the others according to several parameters such as
the timbre, the musical key, the chord progression, the tempo pro-
gression etc. Here, we focus on popular music where pieces can be
segmented into specific repetitive segments with labels such as cho-
rus, verse, or refrain. Segments are considered as similar if they rep-
resent the same musical content, regardless of their instrumentation.
In particular, two same sections are likely to have similar harmonic
structures. In this work, we use this structural information to obtain
mid-level representations of music in terms of chord progression that
has a “structural consistency” [35].

Previous works have already used the structure as a cue to obtain
a “structurally consistent” mid-level representation of music. In the
work of Dannenberg [35], music structure is used to constrain a beat
tracking program based on the idea that similar segments of music
should have corresponding beats and tempo variation. A work more
closely related to this article is [36] in which the repetitive structure
of songs is used to enhance chord extraction. A chromagram is ex-
tracted from the signal, and segments corresponding to a given type
of section are replaced by the average of the chromagram over all
the instance of the same segment type over the whole song, so that
similar structural segments are labelled with the exact same chord
progression. A limitation of this work is that it relies on the hypoth-
esis that the chord sequence is the same in all sections of the same
type. However, repeated segments are often transformed up to a cer-
tain extent and present variations between several occurrences [37].
Moreover, in the case that one segment of the chromagram is blurred
(e.g. because of noise or percussive sounds), this will automatically
affect all same segments, and thus degrade the chord estimation.

1http://alchemy.cs.washington.edu
2http://ias.cs.tum.edu/research/probcog

Here, we show that prior structural information can be used to
enhance chord estimation in a more elegant and flexible way within
the framework of Markov Logic Networks. We do not constrain the
model to have the exact same chord progression in all sections of
the same type, but we only favor same chord progressions for all in-
stances of the same segment type, so that variations between similar
segments can be taken into account. Moreover, the proposed formal-
ism has a good potential of improvement in the future by incorporat-
ing more context information and discovering new predicates.

Although our final goal is to develop a fully automatic model
where an automatic segmentation is used, in this article, the segmen-
tation of the song in beats and in structure is given as prior informa-
tion. As in [36], structure information within a given song is incor-
porated relying on segment types whose instances are harmonically
similar and also have the same length in beats 3.

2. MARKOV LOGIC NETWORKS

A Markov Logic Network (MLN) is a set of weighted first-order
logic formulas [26], that can be seen as a template for the construc-
tion of probabilistic graphical models. We present a short overview
of the underlying concepts with specific examples from the model-
ing of chord structure. A MLN is a hybrid of Markov networks and
first-order logic. A Markov network [38] is a model for the joint dis-
tribution of a set of variables X = (X1, X2, ..., Xn) ∈ X , that is
often represented as a log-linear model:

P (X = x) =
1

Z
exp(

X

j

wjfj(x)) (1)

where Z is a normalization factor, and the value fj(x) are features
associated with state x (x is an assignment to the random variables
X). Here, we will focus on binary features, fj(x) ∈ 0, 1.

A first-order domain is defined by a set of constants (that is as-
sumed finite) representing objects in the domain (e.g. CMchord,
GMchord) and a set of predicates representing properties of those
objects (e.g. IsMajor(x), IsHappyMood(x)) and relations between
them (e.g. AreNeighbors(x, y)). A predicate can be grounded by re-
placing its variables with constants (e.g. IsMajor(CMchord), IsHap-
pyMood(CMchord), AreNeighbors(CMchord, GMchord)). A world
is an assignment of a truth value to each possible ground predi-
cate (or atom). A first-order knowledge base (KB) is a set of for-
mulas in first-order logic, constructed from predicates using logical
connectives and quantifiers. For instance, the knowledge “Major
chords imply happy mood” can be described using the formula ∀x,

IsMajor(x) ⇒ IsHappyMood(x). A first-order KB can be seen as
a set of hard constraints on the set of possible worlds: if a world
violates even one formula, it has zero probability. In real world
schemes, logic formulas are generally true, but not always. The basic
idea in Markov logic is to soften these constraints to handle uncer-
tainty: a world that violates one formula in the KB is less probable
than one that does not violate any formula but not impossible. The
weight associated with each formula reflects how strong a constraint
is, i.e. how unlikely a world is in which that formula is violated.

Formally, a Markov logic network L is defined [26] as a set of
pairs (Fi, wi), where Fi is a formula in first-order logic and wi is a
real number associated with the formula. Together with a finite set of
constants C (to which the predicates appearing in the formulas can
be applied), it defines a ground Markov network ML,C , as follows:
1. ML,C contains one binary node for each possible grounding of

each predicate appearing in L. The node value is 1 if the ground
predicate is true, and 0 otherwise.
3Instances of a segment type may differ in length within the song. In such

a case, following [36], to fulfill the requirement of equal length instances,
only the part of the segment type that is similar in all instances is considered.
The remaining parts are labeled as additional one instance-segments.
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2. ML,C contains one feature for each possible grounding of each
formula Fi in L. The feature value is 1 if the ground formula
is true, and 0 otherwise. The feature weight is the wi associated
with Fi in L.
A ground Markov logic network specifies a probability distri-

bution over the set of possible worlds X , i.e. the set of possible
assignments of truth values to each of the ground atoms in X. The
joint distribution of a possible world x is:

P (X = x) = 1
Z

exp(
P

i wini(x)) =
exp(

P

i
wini(x))

P

x′∈X
exp(

P

i
wini(x

′))

where the sum is over indices of MLN formulas and ni(x) is the
number of true groundings of formula Fi in x (i.e. ni(x) is the
number of times the ith formula is satisfied by possible world x).

3. MODEL

We now present a MLN for modeling the chord progression incor-
porating a priori structural information. The front-end of our model
is based on the extraction from the signal of chroma features [39]
that are 12-dimensional vectors representing the intensity of the 12
semitones of the Western tonal music scale, regardless of octave. We
perform a beat synchronous analysis and compute one chroma vec-
tor per beat. A chord lexicon composed of 24 major M and minor
m triads is considered (CM, . . . , BM, Cm, . . . , Bm).

The structure of the domain is represented by a set of weighted
logical formulas that are described in Table 1. Given this set of rules
with attached weights and a set of evidence literals, described in
Table 2, Maximum A Posteriori (MAP) inference is used to infer
the most likely state of the world. Structural information both at the
beat-synchronous and at global semantic level are added using two
time predicates at multiple time-scale, Succ and SuccStr.

Table 1. MLN for joint chord and structure description.
Predicate declarations

Observation(chroma!, time) Succ(time, time)
Chord(chord!, time) SuccStr(time, time)

Weight Formula
Prior observation chord probabilities:

log(P (CM(t = 0))) Chord(CM, 0)
· · · · · ·

log(P (Bm(t = 0))) Chord(Bm, 0)
Probability that the observation (chroma) has been emitted by a chord:

log(P (o0|CM)) Observation(o0, t) ∧ Chord(CM, t)
log(P (o0|C#M)) Observation(o0, t) ∧ Chord(C#M, t)

· · · · · ·
log(P (oN−1|Bm)) Observation(oN−1, t) ∧ Chord(Bm, t)

Probability of transition between two successive chords:
log(P (CM |CM)) Chord(CM, t1) ∧ Succ(t2, t1) ∧ Chord(CM, t2)

log(P (C#M |CM)) Chord(CM, t1) ∧ Succ(t2, t1) ∧ Chord(C#M, t2)
· · · · · ·

log(P (Bm|Bm)) Chord(Bm, t1) ∧ Succ(t2, t1) ∧ Chord(Bm, t2)
Probability that similar segments have the same chord progression:

wstruct Chord(CM, t1) ∧ SuccStr(t2, t1) ∧ Chord(CM, t2)
wstruct Chord(C#M, t1) ∧ SuccStr(t2, t1) ∧ Chord(C#M, t2)
· · · · · ·

wstruct Chord(Bm, t1) ∧ SuccStr(t2, t1) ∧ Chord(Bm, t2)

Table 2. Evidence for chord and structure description.
// We observe a chroma at each time frame:

Observation(o0, 0) · · ·
Observation(oN−1, N − 1)

// We know the temporal order of the frames:
Succ(1, 0) · · ·

Succ(N − 1, N − 2)
//Prior information about similar segments in the structure:

SuccStr(1, 10)
SuccStr(2,11) · · ·

3.1. Beat-Synchronous Time-Scale
The chord progression at the beat-synchronous frame level can be
modeled by a classic ergodic 24-state HMM such as the one pre-
sented in [4]4, each hidden state corresponding to a chord of the
lexicon, and the observations being the chroma vectors. The HMM

4Model evaluated during the MIREX 2009 contest.

is specified by the prior, observation and transition probabilities dis-
tributions. As we show in [30], the chord progression can be equiv-
alently modeled in the MLN framework considering three generic
formulas, described in Eqs. (2, 4, 6), that reflect the constraints given
by the three distributions given by the HMM. This model does not
consider high-level structural relationships and will be referred to as
MLN chord in what follows. It is briefly described below.

Let ci, i ∈ [1, 24] denote the 24 chords of the dictionary, on, n ∈
[0, N−1] denote the succession of observed chroma vectors, n being
the time index, and N being the total number of beat-synchronous
frames of the analyzed song, and sn, n ∈ [0, N − 1] denotes the
succession of hidden states.

To model the chord progression at the beat-synchronous frame
level, we use an unobservable predicate Chord(ci, t), meaning that
chord ci is played at frame t, and two observable ones, the predicate
Observation(on, t), meaning that we observe chroma on at frame
t, and the temporal predicateSucc(t1, t2), meaning that t1 and t2
are successive frames.
The prior observation probabilities are described using:

log(P (s0 = ci)) Chord(ci, 0) (2)

for each chord ci, i ∈ [1, 24], and with P (s0) denoting the prior
distribution of states.
The conditional observation probabilities are described using a set
of conjunctions of the form:

∀t ∈ [0, N − 1] log(P (on|sn = ci)) (3)

Observation(on, t) ∧ Chord(ci, t)

for each combination of observation on and chord ci, and with
P (on|sn) denoting the corresponding observation probability. Note
that conjunctions, by definition, have but one true grounding each.
The transition probabilities are described using:

∀t1, t2 ∈ [0, N − 1] log(P (sn = ci|sn−1 = cj)) (4)

Chord(ci, t1) ∧ Succ(t2, t1) ∧ Chord(cj , t2)

for all pairs of chords (ci, cj), i, j ∈ [1, 24], and with P (sn|sn−1)
denoting the corresponding transition probability.

The weights attached to formulas can be obtained from training.
However, in this work, following [30, 4] weights are based on mu-
sical knowledge. The distribution P (s0) over initial states is chosen
as uniform. The observation distribution probabilities P (on|sn) are
obtained by computing the correlation between the observation vec-
tors (the chroma vectors) and a set of chord templates which are the
theoretical chroma vectors corresponding to the 24 major and minor
triads. A state-transition matrix based on musical knowledge [40]
is used to model the transition probabilities P (sn|sn−1), reflecting
chord transition rules. More details can be found in [30, 4].

Note that for each conditional distribution, only mutually exclu-
sive and exhaustive sets of formulas are used, i.e. exactly one of
them is true. For instance, there is one and only one possible chord
per frame. This is indicated in Table 1 using the symbol !.

Evidence consists of a set of ground atoms that give chroma ob-
servations corresponding to each frame, and the temporal succession
of frames over time using the beat-level temporal predicate Succ.

3.2. Global Semantic Structure Time-Scale
Prior structural information at the global semantic level, based on
the idea that segments of the same type have a similar chord pro-
gression, is incorporated using the time predicate SuccStr. This
predicate allows considering wider temporal windows, as opposed
to consecutive frames via the Succ predicate.

The position of segments of same type in the song is given as evi-
dence. Let K denote the number of distinct segments. Each segment
sk, k ∈ [1, K] may be characterized by its beginning position (in
frames) bk ∈ [1, N ], and its length in beats lk. For each pair of same
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Fig. 1. Chord estimation results for an excerpt of the song One After 909.

segment type (sk, sk′), the position of matching beat-synchronous
frames (likely to be the same chord type) is given as evidence5:

SuccStr(sk(bk), s′
k
(bk′ )) (5)

· · ·
SuccStr(sk(bk + lk − 1), s′

k′(bk′ + lk′ − 1))

The following set of formulas is added to the Markov logic net-
work to express how strong the constraint that two same segments
have a similar chord progression is:

∀t1, t2 ∈ [0, N − 1] wstruct (6)

Chord(ci, t1) ∧ SuccStr(t2, t1) ∧ Chord(ci, t2)

for all chord ci, i ∈ [1, 24], and with weight wstruct, reflecting how
strong the constraint is, manually set. In practice, wstruct will be a
small positive value (in our experiments, pstruct = −log(0.95)) to
favor similar chord progressions in same segment types.

This model that incorporates prior information on global seman-
tic structure will be referred to as MLN struct in what follows.

3.3. Inference
The inference task consists of computing the answer to a query (here
the chord progression), and finding the most probable state of the
world y given some evidence x. Specifically, Maximum A Posteriori
(MAP) inference, finds the most probable state given the evidence.
For inference, we used the exact solver toulbar2 branch & bound
MPE inference [41] with the ProbCog toolbox, which graphic inter-
face allows convenient editing of the MLN predicates and formulas
given as input to the algorithm.

4. EVALUATION

The proposed model has been tested on a set of hand-labeled Beatles
songs, a popular database used for the chord estimation task [42]. All
the recordings are polyphonic, multi-instrumental songs containing
drums and vocal parts. We map the complex chords in the anno-
tation (such as major and minor 6th, 7th, 9th) to their root triads.
The original set comprises of Beatles songs but we reduced it to 143
songs, removing songs for which the structure was ambiguous (per-
ceptually ambiguous metrical structure or segment repetitions)6.

We compare the results of the model MLN struct with the base-
line method MLN chord, and with the baseline method modified to
account for the structure in a similar way to [36], by replacing chro-
magram portions of same segments types by their average. Note that
the basis signal features (chroma) are the same for all three methods.

The results obtained with the various configurations of the pro-
posed model are described in Table 3. The label accuracy LA chord
estimation results correspond to the mean and standard deviation of
correctly identified chords per song. Paired sample t-tests at the 5%
significance level were performed to determine whether there is sta-
tistical significance in the results between different configurations.

The proposed approach compactly encodes physical signal con-
tent and higher-level semantic information in a unified formalism.

5Note that the values sk(bk), . . . , s′
k′(bk′ +lk′−1) in Eq.(5) correspond

to beat time-instants. Note also that lk′ = lk .
6The list of this subset can be found in http://opihi.cs.uvic.

ca/icassp2013mln.html.

Table 3. Chord results obtained with various methods. Stat. Sig.:
statistical significance between the model MLN struct and others.

Chord LA results Stat. Sig.
MLN chord 72.57 ± 13.51

}yesMLN struct 74.03 ± 13.90
}no

[36] 73.90 ± 13.79

Results show that global semantic information can be concisely and
elegantly combined with information at the analysis frame scale so
that chord estimation results are significantly improved, and more
consistent with the global structure, as illustrated in Figure 1 (see
the gray dashed rectangles, MLN chord and MLN struct).

The results obtained with the proposed model fairly compare
with the previously proposed approach [36] that uses global structure
information to enhance chord estimation. Moreover, the proposed
model allows for taking into account variations between segments
by favoring instead of exactly constraining the chord progression to
be the same for segments of the same type, as illustrated in Figure
1. In the bridge sections, in the black dashed rectangles, the un-
derlying harmony is F# major. In the first instance of the bridge
section, the harmony is disturbed by a descending chromatic scale
in the bass, which is not the case for the second instance. Averaging
the chromagram of the two instances (as in [36]) results into errors
in the chord estimation, whereas in the case of MLN struct, the first
instance benefits from the signal content of the second instance and
the harmonic content is better estimated.

There is no significant difference between the [36] and MLN struct
models, but we expect that other music styles such as jazz music
where repetitions of segments result in more complex variations due
to improvisation would further benefit from the flexibility of the
proposed model. This is left for future work.

5. CONCLUSION AND FUTURE WORK

In this article, we have proposed Markov logic as a formalism that
enables intuitive, effective, and expressive reasoning about complex
relational structure and uncertainty of music data. Chord and struc-
ture are integrated in a single unified formalism, resulting in a more
elegant and flexible model, compared to existing more ad-hoc ap-
proaches. This work is a new step towards a unified multi-scale de-
scription of audio in which information specific to various semantic
levels (analysis frame, phrase and global structure) interact.

Future work will focus on extending this approach to a fully
automatic one, by incorporating estimated beats and structure lo-
cation, possibly using penalties according to the degree of reliabil-
ity of their estimation. The proposed model has great potential for
improvement. It allows for incorporation of other context informa-
tion by adding new logical rules, and future work will in particular
consider combination with the model described in [30]. Relational
structure has been derived from background musical knowledge. A
major objective is now to explore the use of learning algorithms in
the framework of Markov logic to automatically discover and model
new structural rules, and to take advantage of the flexibility of the
MLN framework to combine this information from training with
background music knowledge.
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