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ABSTRACT

Image based rendering is a technique for producing arbitrary
viewpoints of a scene using multiple images instead of exact
object models. The recent emergence of low-price, fast, and
reliable cameras for measuring depth makes possible the aug-
mentation of traditional color images with depth images. This
combination promises to improve the rendering quality of an
arbitrary viewpoint and thus have a great impact on IBR. A
key issue is to understand, for any particular scene of inter-
est, how many depth images and how many color images are
necessary in order to obtain good rendering results. In this
paper, using a framework akin to the plenoptic function, we
perform a spectral analysis of multi-view depth images in or-
der to determine the relationship between the number of depth
and color images required. Our analysis is then validated us-
ing both synthetic and real images.

Index Terms— Depth cameras, Image-Based Rendering,
plenoptic function, sampling, spectral analysis

1. INTRODUCTION

Image Based Rendering (IBR) is an effective technique for
rendering novel views from a set of available multi-view im-
ages. Instead of rendering views of 3-D scenes by projecting
objects and their textures, novel views are rendered by inter-
polating available nearby images. The advantage of such a
method is that it produces convincing photorealistic results
since the interpolated viewpoints are obtained through com-
binations of real images. The main drawback is the fact that a
huge amount of data needs to be captured.

Clearly, knowledge of the scene geometry reduces the
number of images required. The interplay between geometry
and sampling rate (number and spacing of cameras) has been
extensively studied in the recent past (e.g., [1, 2, 3, 4, 5]).
Unfortunately, 3-D reconstruction techniques from passive
cameras, are still not reliable and do not work well in many
cases. This fact has profoundly limited the use of IBR ideas.
Recent advances in sensing technologies may, however, soon
allow large-scale deployment of 3-D cameras using active
depth sensing systems. These cameras are able to estimate
depth and geometry with good accuracy and reliability, and
for this reason can be very useful in IBR [6]. A natural ques-

Fig. 1. Scene model of a slanted plane where z(x) is the depth at x,
f is the focal length and h is the curvilinear coordinate. Note that θ
is the viewing angle and φ is the slant of the plane.

tion then is to understand the interplay between the number
of depth and color cameras. Specifically, given a scene of
interest with a certain geometry, how many depth cameras are
necessary to infer the geometry and how many color cameras
are then needed, given the inferred geometry, to render novel
photorealistic views?

To answer this question we put ourselves in the typical
Shannon sampling framework and perform a spectral anal-
ysis of both multi-view depth images and multi-view color
images. In that respect we continue the work of several re-
searchers [1, 2, 3, 4]. In particular we use the formalism de-
veloped in a previous paper [7] and expand it to include the
case of depth cameras. We show that the interplay between
the required number of depth and color cameras mostly de-
pends on the resolution of the color cameras and the band-
width of the texture of the scene. Our analysis is then vali-
dated using both synthetic and real images.

The paper is organized as follows: In the next section, we
review the spectral analysis of multi-view color images, in
particular the concept of the plenoptic function [8]. In Sec. 3,
we present a spectral analysis of multi-view depth images of
a slanted plane and determine a maximum acceptable spacing
between the depth cameras. We present results validating this
analysis for both synthetic and real images in Sec. 4. We
finally conclude in Sec. 5.

2. THE PLENOPTIC FUNCTION

At the heart of IBR is the idea that a scene can be represented
as a collection of light rays emanating from the scene. The
light rays in question are described using the 7-D plenop-
tic function [8]. The number of dimensions, however, can
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be reduced by constraining the sensing setup. For example,
the case when cameras lie on a plane leads to the 4-D lumi-
graph [9] or lightfield [10] parametrization. This parametriza-
tion is obtained by using two parallel planes: the camera plane
(s, t) and the image plane (u, v). The distance between the
two planes is the focal length, f . In this parametrization, the
function p(s, t, u, v) represents the intensity of the light ray at
camera location (s, t) and pixel location (u, v).

A further simplification made in [1] is to fix s and u, cor-
responding to the situation where the camera positions are
constrained to a 1-D camera line and only one scan-line is
considered in each image, see Fig. 1. In this case the lightfield
is reduced to two dimensions: p(t, v). This representation is
also known as the Epipolar Plane Image (EPI).

2.1. Spectral Analysis of the Plenoptic Function

IBR can be seen as the problem of sampling and interpolating
the plenoptic function. Therefore by examining its spectral
properties we can determine the maximum acceptable spacing
between the color cameras. Using the EPI parametrization,
the plenoptic spectrum is defined as P (ωt, ωv) = F{p(t, v)},
where F is the Fourier transform operator. The properties of
the plenoptic spectrum were studied for the first time in [1].
By assuming a Lambertian scene with no occlusion, the au-
thors showed that the spectrum is approximately bounded by
lines related to the maximum and minimum depths of the
scene and that finite camera resolution bandlimits the spec-
trum. This spectral analysis was shown to be exact in [2] and
extended to more general cases, in particular non-Lambertian
and occluded scenes, in [3].

This spectral analysis was re-examined in [7] for the sim-
ple case of a slanted plane, see Fig. 1, but with two additional
constraints: finite scene width (FSW) and cameras with finite
field of view (FFoV). Using these constraints the authors pre-
sented a closed-form expression for the plenoptic spectrum
of a slanted plane with bandlimited texture. The resulting
spectrum was band-unlimited in both ωt and ωv . However,
by assuming the function is bandlimited to an essential band-
width, [7] determined a maximum acceptable camera spacing
for the reconstruction of the plenoptic function. The essential
bandwidth was defined such that it contained 90% of the sig-
nal’s energy. Based on this spectral result, [5] formulated an
algorithm to determine the optimum positioning for a finite
number of cameras to sample a scene with a smoothly vary-
ing surface. However, in order for the algorithm to operate it
requires prior knowledge of the scene geometry.

3. THE PANTELIC FUNCTION

We propose treating multi-view depth images as samples of
a function, q(t, v), which we term the Pantelic1 function. It

1With a slight abuse, we derived the word pantelic from the Greek παν

meaning all, and τηλε meaning at distance.

describes the inverse depth of the scene captured at camera lo-
cation t and pixel location v. Therefore, by performing spec-
tral analysis on the function, we can determine the minimum
number of depth cameras required to reconstruct the scene ge-
ometry. The reconstructed geometry can then be used in the
adaptive sampling algorithm proposed in [5].

We focus on the spectral analysis of the pantelic function
for a slanted plane, see Fig. 1. The scene geometry equations
for this scene are

Gs =

{
x = h cos(φ) + x1

z(x) = (x− x1) tan(φ) + zmin
(1)

where x ∈ [x1, x2] is the spatial position, z ∈ [zmin, zmax]
is the depth and φ is the angle between the plane and the line
z = zmin. The finite width of the plane is T , hence h ∈ [0, T ]
is the curvilinear coordinate.

Having defined the scene geometry, we use the functional
framework outlined in [2] in order to relate a point on the
scene at (x, z(x)) to a camera location t and pixel location v,
hence

t = x− z(x)
v

f
. (2)

Note that the FFoV constraint restricts v to v ∈ [−vm, vm].
The relationship in (2) is restricted to a one to one mapping
using a no-occlusion constraint

f

vm
> |z′(x)| = |tan(φ)| , (3)

where z′(x) is the first differential of z(x) with respect to x.
On a last note, the absolute depth of a point on the scene is in-
dependent of the camera location, thus using (2) the following
is true q(t, v) = q̂(x) = 1/z(x).

3.1. Derivation of Pantelic Spectrum

Starting with the Fourier transform, Q(ωt, ωv), of the pantelic
function, q(t, v), we apply the FFoV and FSW constraints to
obtain

Q(ωt, ωv) =

∫
∞

−∞

∫
∞

−∞

q(t, v) e−j(ωtt+ωvv) dtdv,

(i)
=

∫
∞

−∞

∫
∞

−∞

(
1− z′(x)

v

f

)
q̂(x)e−j(ωt(x−z(x)v/f)+ωvv)dxdv,

(ii)
=

∫ x2

x1

q̂(x)e−jωtx

∫ vm

−vm

(
1− z′(x)

v

f

)
e−j(ωv−z(x)ωt/f)vdvdx,

(iii)
= 2vm

∫ x2

x1

q̂(x)

[
sinc (Ω)− j

tan(φ)vm
f

sinc′(Ω)

]
e−jωtxdx,

(4)

where sinc′(Ω) is the first derivative of the sinc function with
respect to the argument, and Ω = ωvvm − (z(x)vmωt)/f .
Step (i) follows from applying (2) and q(t, v) = q̂(x). Step
(ii) follows from applying the FFoV and FSW constraints,
and the last step from solving the integral in v.
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By changing the variable of integration from x to h, using
(1), the equation in (4) becomes

Q(ωt, ωv) = 2vm

[∫ T

0

cos(φ)sinc(Ω̂)
h sin(φ) + zmin

e−jωt cos(φ)hdh

−j
vm sin(φ)

f

∫ T

0

sinc′(Ω̂)
h sin(φ) + zmin

e−jωt cos(φ)hdh

]
, (5)

where
Ω̂ = ωvvm − (h sin(φ) + zmin)

vm
f

ωt.

Note that for clarity in this derivation, and without loss of
generality, we set x1 = 0. At this point, we perform another
change of variable, coupled with integration by parts, to ob-
tain the following expression for the pantelic spectrum

Q(ωt, ωv) = j 2vm

(
sinc(a)
zmaxωt

e−j(a−b)c −
sinc(b)
zminωt

)

− j
2v2m
f

ejbc
∫ a

b

sinc(Ω̂)

(ωvvm − Ω̂)2
e−jΩ̂c dΩ̂ (6)

where

a = ωvvm − ωt
zmaxvm

f
, b = ωvvm − ωt

zminvm
f

,

and c =
−f

tan(φ)vm
.

An exact closed-form expression for the pantelic spectrum
is obtained from (6) by solving the remaining integral.2 Note
that (6) is only valid for ωt �= 0, if ωt = 0 then

Q(0, ωv) =
2vm

tan(φ)
ln

(
zmax

zmin

)(
sinc(ωvvm)

−j
vm tan(φ)

f
sinc′(ωvvm)

)
. (7)

A comparison between the pantelic spectrum for a slanted
plane and its corresponding plenoptic spectrum is shown in
Fig. 2. The pantelic spectrum is illustrated in Fig. 2(a) and
the plenoptic spectrum, assuming sinusoidal texture, is in
Fig. 2(b). Note that the spectrum in Fig. 2(a) is computed us-
ing our expression however if we compare it to that calculated
numerically the PSNR between the two is 72.8dB.

3.2. Essential Bandwidth of the Pantelic Spectrum

Similar to the plenoptic spectrum, the pantelic spectrum of
a slanted plane under FSW and FFoV is band-unlimited in
both ωt and ωv . Therefore the maximum acceptable spac-
ing between the depth cameras is determined using the es-
sential bandwidth of the pantelic spectrum. One approach to
this problem would be to use the essential bandwidth for the

2We omit the detail of this derivation due to the lack of space.

(a)

(b)

Fig. 2. Comparison of the pantelic spectrum, (a), and the plenoptic
spectrum, (b), for a slanted plane with sinusoidal texture pasted to
the surface.

plenoptic spectrum from [5]. However a simple visual com-
parison of the spectra in Fig. 2 highlights the compactness
of the pantelic spectrum around the origin compared to the
plenoptic spectrum. This suggest that fewer depth cameras
are required than image cameras. As a result we opt for a
rectangular essential bandwidth centered around the origin.

This region is determined by approximating the band-
width along Q(0, ωv) as the bandwidth of sinc(ωvvm), which
is π/vm, to give a maximum value in ωv . This value is then
projected onto the ωt-axis using ωv = zminωt/f . As a result
the essential bandwidth is defined by the region

B =

{
ωt, ωv : |ωt| ∈

[
0,

fπ

vmzmin

]
, |ωv| ∈

[
0,

π

vm

]}
. (8)

By using the above expression, the maximum acceptable
depth camera spacing is given by

Δt = 2π

(
2

fπ

vmzmin

)
−1

=
zminvm

f
. (9)

Therefore the depth camera spacing for a slanted plane is
only dependent on the minimum depth of the scene and cam-
era characteristics. In contrast the equivalent color camera
spacing is also dependent upon the scene geometry and in-
versely proportional to the maximum frequency of the tex-
ture. Consequently fewer depth cameras than color cameras
are required for a slanted plane.

4. RESULTS

In this section we extend the analysis, empirically, to more
complex synthetic and real scenes. The synthetic scene is
a piecewise quadratic surface, see Fig. 3(a), with sinusoidal
texture. The scene is sampled using depth cameras and an
estimate of the surface obtained from 1/q(t, 0). This surface
estimate is then used as a prior to sample and reconstruct the
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(a) (b)

Fig. 3. The synthetic data. (a) Diagram of the piecewise quadratic
surface. (b) Graph of the PSNR of the reconstructed EPI as the num-
ber of depth cameras increases. Note that the number of color cam-
eras used in the reconstruction is fixed at 250.

plenoptic function, assuming a fixed number of color images,
using the algorithm in [5]. The PSNR of the reconstructed
plenoptic function is shown in Fig. 3(b) as the number of
depth cameras varies. The critical sample point marked on
Fig. 3(b) is obtained by using (9) as an approximation. No-
tice that the PSNR of the reconstruction begins to saturate af-
ter this point, which suggests that (9) is a good approximation
of the depth camera spacing for more complex scenes.

For the real data, we generated our own 4-D lightfield
testset comprising both color and depth images as shown in
Fig. 4(a) and Fig. 4(b), respectiviely. The images were ac-
quired using Microsoft’s Xbox Kinect camera mounted to our
camera rig, see Fig. 4(c). The camera rig comprises a 10x10
grid with a separation of 5cm, horizontally and vertically, re-
sulting in a 100 color and depth image pairs. Similar to the
synthetic scene, a sparse number of color images is fixed be-
forehand and the number of depth images varied. Using this
subset of images, the remainder are rendered using the algo-
rithm detailed in [11]. Fig. 4(d) shows the PSNR between the
rendered images and their unused ground truths as the num-
ber of depth cameras varies. In line with our theory, the vast
majority of the depth cameras are redundant and as few as 16
are necessary for rendering with little drop in the synthesized
quality.

5. CONCLUSIONS

We have presented a spectral analysis of multi-view depth im-
ages using a framework akin to the plenoptic function. Sim-
ilar to the initial research on plenoptic sampling, we assume
no-occlusions and derived an exact expression for the spec-
trum of a multi-view depth image set belonging to a slanted
plane. From this expression we determined a maximum ac-
ceptable depth camera spacing for a slanted plane, which de-
pends on the minimum depth of the scene and the camera
characteristics. Therefore, when performing IBR on a slanted
plane, fewer depth cameras are required than image cameras.
Finally, we validate this statement empirically for more com-
plex scenes using both synthetic and real images. Our results
show that our derived maximum depth camera spacing is a
good approximation for more complex scenes as the render-
ing quality saturates beyond that point.

(a) (b)

(c) (d)

Fig. 4. The real data. An example of a color image, (a), and a
depth image, (b), of the scene captured at a camera position. (c)
The Microsoft Xbox Kinect camera mounted on the 10-by-10 grid.
Each camera position is 5cm apart, vertically and horizontally. (d)
Graph of the rendered image PSNR as the number of depth cameras
increases. The number of color cameras used in the rendering is
fixed.
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