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ABSTRACT 

Commodity depth cameras have attracted a lot of research interest 
recently, in particular the structured-light based Kinect cameras 
available on the mass market. One important application of such 
cameras is 3D scene reconstruction and view synthesis. However, a 
single depth camera often has limited field of view and there is 
missing depth information when synthesizing a virtual view from a 
new viewpoint. In this paper, we study the problem of 3D scene 
reconstruction from multiple structured-light based depth cameras. 
Since multiple cameras may cause severe interference in the re-
gions where the projected light overlaps, we present a novel plane-
sweeping based algorithm to handle such interference. The pro-
posed algorithm takes into account the correlation between multi-
ple projectors and the infrared images as well as the correlation 
between the infrared images, thereby recovering the depth infor-
mation for both overlapped and non-overlapped regions. Simula-
tion results demonstrate that the proposed solution is very effective 
on various scenes. 

Index Terms—3D scene reconstruction, multiple depth cam-
eras, structured light. 

1. INTRODUCTION 

Recently, there have been an increasing number of depth cameras 
available at commodity prices, such as Microsoft Kinect Sensors 
[10]. These cameras are active sensors. They emit light (usually in 
the infrared spectrum) to the environment, and derive the scene’s 
depth information based on structured-light triangulation or time-
of-flight measurements. These cameras have created a lot of inter-
esting new research applications, such as 3D shape scanning [5], 
foreground and background segmentation [4], facial expression 
tracking [2], etc. 

In this paper, we consider the problem of 3D scene reconstruc-
tion, which has been an active research topic for decades. It has 
found many applications including augmented reality, free view-
point television, and natural user interaction. Traditionally, 3D 
scene reconstruction was performed with laser scanners or multiple 
color cameras. The former approach is expensive and slow, and the 
latter approach is inaccurate, particularly on surfaces where there is 
no texture. The depth camera provides an alternate, cheap and 
accurate depth measurement scheme for 3D reconstruction.  

Given a depth camera, since the depth information is derived 
from a single viewpoint, it may contain missing data when viewed 
from a different viewpoint. One possibility is to fuse depth sensors 
with passive stereo vision [12][13]. Another solution to the above 

 
problem is through the use of multiple depth cameras from differ-
ent viewpoints, such as the work in [7]. Unfortunately, unlike color 
cameras that observe the scene passively, active depth sensors emit 
their own light onto the scene; thus multiple sensors can interfere 
with each other. Fig. 1 shows an example scene captured by two 
Kinect cameras. Note when both cameras are turned on simultane-
ously, the depth quality degrades significantly (Fig. 1 (c)). One 
must address the interference issue for a setup with multiple depth 
cameras. 

In [7], to operate multiple depth cameras in the same environ-
ment, the authors used three time-of-flight cameras, each operating 
at a different light modulation frequency. While this is a technical-
ly simple solution, customization is required for the depth cameras, 
which is inconvenient. Another possibility is through time-division 
multiplexing. That is, different depth cameras operate at different 
time instances, and thus do not interfere with each other. This solu-
tion requires highly accurate synchronization among the cameras, 
which again is nontrivial to implement. In this paper, we present a 
novel approach for 3D scene reconstruction from multiple struc-
tured-light based depth cameras (SLDC). Unlike existing ap-
proaches, we use off-the-shelf cameras directly without modifica-
tion. A novel depth reconstruction algorithm based on plane-
sweeping [3] is proposed, which takes into account the correlation 
between multiple projectors and infrared sensors as well as the 
correlation between the infrared images. The approach can there-
fore recover the depth information for regions with and without 
interference. 

 
Figure 1. Capturing a scene with two structured-light based
depth sensors. (a) System setup. (b) Captured depth images 
when only one camera operates. (c) Captured depth images 
when the two depth cameras operate simultaneously. Note the 
depth images have many more holes.  
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The rest of the paper is organized as follows. The principle of 

SLDC is briefly reviewed in Section 2. Section 3 describes the 
proposed algorithm for multiple such cameras, followed by the 
simulation results in Section 4. In Section 5, we conclude the paper 
and present the future work. 

2. STRUCTURED-LIGHT BASED DEPTH CAMERA 

Structured light based stereo vision has been studied in the litera-
ture for many years [1]. A typical structured-light based depth 
camera is constructed by the combination of an infrared projector 
and an infrared camera. The projector projects a random infrared 
pattern into the scene, and the camera captures the scene back as 
images, as shown in Fig. 2. Since the projected pattern is known, 
the camera can derive the scene’s depth information based on 
standard stereo algorithms such as cross-correlation [6]. The ap-
proach is very effective for real-time depth reconstruction, and has 
been adopted in the popular Microsoft Kinect sensor for creating a 
new gaming experience. 

Since SLDC derives the scene depth assuming the known pro-
jected pattern, it is sensitive to external light that may alter the 
infrared illumination of the scene. In particular, when multiple 
SLDCs are placed in the same environment with overlapped illu-
mination areas, the depth information derived from each camera 
may be inaccurate (Fig. 1). Consequently, we face two major chal-
lenges when using multiple SLDCs for 3D reconstruction: first, 
how to correctly distinguish whether a surface area is illuminated 
by one or multiple projectors; and second, how to perform depth 
reconstruction in the areas where the projected patterns overlap. 

In the next section, we present a plane-sweeping based algo-
rithm that automatically handles the above two challenges. 

3. 3D RECONSTRUCTION USING MULTIPLE SLDCS 

Consider the general problem of 3D scene reconstruction with M 
projectors and N cameras, where M and N may not be equal (e.g., 
when additional infrared cameras are added to the setup). We name 
the projectors , , ,  and the cameras , , , . The pro-
jectors emit random but time-invariant patterns into the scene, and 
these patterns are assumed to be known. In addition, we assume 
that all the cameras and projectors are calibrated beforehand, i.e.,  

 
for any point  in the 3D space, we know how to find 
its projection onto the 2D images of the projectors and the cameras 
(the 2D images of the projectors are the patterns themselves):   

                              (1) 
where  and  are the projected points in the  projector 
and the   camera, respectively.  and  are the projection 
matrices of the  projector and the  camera, respectively. 

Given a point  on the surface of the scene, the intensity of the 
projected 2D pixels shall satisfy two major constraints: 
1. Camera Observation Constraint: The cameras shall see the 
same intensity at the projected pixel, as long as the scene surface 
point is not occluded: 

                                          (2) 
This is the standard multi-view intensity constraint. 
2. Projector-Camera Constraint: The observed pixels are the 
linear1 combination of the projected patterns by the projectors that 
can illuminate that particular surface point: 

                                  (3) 
where  are the equivalent reflection ratio for the corre-
sponding pattern.  

We develop a simple algorithm based on plane sweeping to 
perform 3D scene reconstruction using the above two constraints. 
Plane sweeping is a hypothesis testing scheme illustrated in Fig. 3. 
Given a virtual view point, the space is sampled into multiple fron-
to-parallel planes. For a particular light ray, we compute the inter-
section between the light ray and the test planes, and project the 
intersection points to the projectors and cameras. The two con-
straints (Eq. (2) and (3)) are then tested to verify the hypothesis 
that the surface point is indeed at the intersection. For this purpose, 
we evaluate the likelihood of the event as below. 
 
3.1. Likelihood of the Camera Observation Constraint 
 
When only the camera observation constraint is considered, the 3D 
reconstruction problem is a very typical multi-view stereo (MVS) 
problem. There have been many approaches that can address this 
problem, ranging from simple plane sweeping based methods [9] 
to more sophisticated algorithms such as belief propagation [14] 
and graph cut [8]. In fact, under the multiple structured-light depth 
cameras setup, the problem is even better conditioned, since the 

                                                 
1 The linear assumption is usually valid when the number of projectors is 
small. However, it can happen that the combined illumination may saturate 
the camera sensors. Considering the nonlinear effects will be our future 
work. 

 
Figure 2. Illustration of a structured-light based depth cam-
era. An infrared projector projects a random pattern onto the 
scene, which is observed by an infrared camera. Based on 
triangulation, the depth image can be derived. (a) Setup. (b) 
Top: image captured by the camera; bottom: depth image.  

 
Figure 3. Illustration of the plane sweeping scheme using two 
structured light based depth cameras.   
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scene surface is textured with the random patterns, thus removing 
one of the biggest headaches in MVS – textureless surfaces. On the 
other hand, when the number of depth cameras is small (e.g., 2-3 
depth cameras), MVS may still be insufficient to recover the full 
3D depth due to self and mutual occlusions.  

In our implementation, we compute the mean-removed cross 
correlation (MRCC) between corresponding patches to model the 
likelihood due to the camera observation constraint. Given the 
hypothesis point X, we project it to all the cameras using Eq. (1). 
For each projected point , a small surrounding image patch is 
extracted, denoted as . The MRCC is calculated as: 

                    (4) 

where  and   are the mean intensity of the patches on camera 
 and , respectively. We take the highest MRCC between the 

camera pairs as the likelihood of the Camera Observation Con-
straint for the whole system: 

.                        (5) 
We may also compute the mean patch  from the two patches that 
has the highest MRCC: 

,                                  (6) 
which we will use to compute the likelihood of the projector-
camera constraint. 

3.2. Likelihood of the Projector-Camera Constraint 

The projector-camera constraint takes more sophistication to ex-
plore, as the linear weights  in Eq. (3) are unknown. In fact,  
at least depends on the distance from the surface point to each 
projector, the surface orientation, and self/mutual occlusions. Giv-
en the mean patch  obtained in the previous subsection, we solve 
a least square fitting problem as: 

, (7) 
where  is a patch surrounding the hypothesized intersection’s 
projection to projector . Such a fitting problem can be easily 
solved using the pseudo inverse. 

The likelihood of the projector-camera constraint is thus com-
puted as the MRCC of the fitting result with : 

.                       (8) 
The overall likelihood of a hypothesized intersection is thus com-
puted as: 

.    (9) 

3.3. Practical Implementation 

In real-world systems, the number of structured-light depth camer-
as adopted is usually small. Consequently, the baseline between the 
depth cameras can be large. It is well known that multi-view stereo 
with wide baselines is a very challenging problem due to occlu-
sions and perspective projections. On the other hand, although 
multiple depth cameras can interfere with each other, due to the 
random patterns adopted in such cameras, each camera still has 
some capability of determining the correct depth under interference 
(as demonstrated in Fig. 1 (c)). 

This leads to a simpler but more efficient scheme as follows. 
We first let each depth camera obtain depth values independently. 
This is usually performed by the depth cameras’ hardware, thus 
does not incur any computational cost on the computer. The depth 
images may contain holes in the interference regions, since the 

 
hardware algorithm has a hard threshold to ensure all reported 
depth values are correct. Given a virtual viewpoint, we warp the 
depth images to the desired viewpoint, and then fill the holes 
through maximizing the likelihood as in Eq. (9). This algorithm 
works very well, as shown in the next section. 
 

4. EXPERIMENTAL RESULTS 
 
To validate the performance of the proposed method, we conduct 
experiments using three synthetic scenes, teapot, vase and ta-
ble/bucket, rendered by the popular ray tracing software POV-Ray2 
[11]. For each scene, two depth cameras are used to simultaneously 
capture the depth of the scene. Each depth camera contains a pro-
jector and a camera. The projector is simulated with a point light 
source centered in a cube. Five faces of the cube are solid, and the 
other face is modulated with a pseudo-random pattern. The camera 
is placed 7.2 cm away from the projector, and captures the scene. 
The two depth cameras are about 30 cm apart. The random pattern 
and two example images captured by the infrared cameras are 
shown in Fig. 4.  

Fig. 5 (a) and (b) shows the depth images reconstructed using 
cross-correlation based stereo method for each depth camera inde-
pendently. Due to interference from the other camera, both depth 
maps have holes since the maximum MRCC score between the 
captured image and the known projector pattern for those light rays 
is below a fixed threshold 0.5. In Fig. 5 (c), we attempt to recon-
struct the depth map at the center viewpoint between the two depth 
cameras using the higher MRCC of the two cameras. It can be seen 
that some of the holes are filled, though the depth map still has 
relatively poor quality. In Fig. 5 (d), we reconstruct the depth map 
at the center viewpoint using MVS by maximizing Eq. (5) for each 
light ray during plane sweeping. The result is better in the over-
lapped regions but worse around occlusion boundaries. Fig. 5 (e) 
shows the result of the proposed method (Section 3.3). It can be 
seen that the resultant depth map is very good, similar to the 
ground truth depth (Fig. 5 (f)). 

We further measure the peak signal to noise ratio (PSNR) of 
the reconstructed depth in Table 1. It can be seen that the proposed 
method performs much better than direct depth merge or MVS. 

                                                 
2 We tried to use the Kinect sensor, and found that the depth values report-
ed by the sensor are very poorly calibrated across different units. Future 
work is necessary to calibrate them accurately before testing the proposed 
method. 

 
Figure 4. Illustration of the synthetic scene experiments. Top:
random patterns of the simulated projectors. Bottom: “cap-
tured” images. The brighter region in the bottom images are 
the regions with the two patterns overlapped.  
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5. CONCLUSION AND FUTURE WORK 

In this paper, we presented a novel 3D depth reconstruction algo-
rithm using multiple structured-light based depth cameras. The 
algorithm fuses the results from structured-light based stereo and 
multi-view stereo, and is capable of combating the interference 
caused by multiple active sensors. The solution can be applied to 
commodity depth cameras without special customization, and is 
thus attractive in practice. Future work includes the calibration of 
the returned depth values from commodity depth sensors, and ap-
plying the proposed method in real world examples. 
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Table 1. PSNR of reconstructed depth maps in dB. Note the 
results of MVS are much worse than the other two because 
MVS cannot reconstruct depth for the areas not seen by both 
cameras.  

 
Depth merge 

Fig. 5 (c) 
MVS 

Fig. 5 (d) 
Proposed 
Fig. 5 (e) 

Teapot 22.0746 12.9473 33.6717 

Vase 26.6831 13.6862 32.1119 

Table/bucket 20.3470 12.8033 27.5648 

 
Figure 5. Experimental results on 3 synthetic scenes simulated with POV-Ray. From top to bottom: teapot, vase, ta-
ble/bucket. (a) Depth image “captured” from the left camera. (b) Depth image “captured” from the right camera. (c) 
Merged depth map rendered at a center viewpoint. (d) Depth reconstructed at a center viewpoint using multi-view stereo
based on maximizing Eq. (5). (e) Depth reconstructed at a center viewpoint using the proposed method. (f) Ground true
depth map at the center viewpoint.  
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