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ABSTRACT

In this paper we propose a cloud-based approach to im-
prove the 3D reconstruction capability of handheld devices
with real-time depth sensors. We attempt to characterize the
quality of 3D information captured by real time depth sensing
devices, and in particular examine how sensors from Prime
Sense and Canesta measure distances, and derive simple ana-
lytical models on performance limitations for each. We also
study the factors that affect depth sensing quality when these
devices are used to incrementally build larger or denser 3D
models. Empirical experiments confirm our analysis. Our
findings allow us to design a quality metric which can inter-
actively inform users to guide them on how to optimize the
quality of their captured 3D content.

Index Terms— TOF, Depth Sensing, interaction, quality
feedback, 3D reconstruction

1. INTRODUCTION

With the successful introduction of affordable real time depth
sensors into the consumer video gaming market[1], reli-
able depth sensing has become immediately accessible to
researchers and practitioners. The availability of reliable
depth information in addition to color enables the synthesis
of new views in image-based rendering [2]. Real time time-
of-flight(TOF) depth sensors can also be synergistically fused
with multiview stereo for fast high quality 3D reconstruc-
tion [3].

As depth sensors become more power efficient, mobile
devices can potentially turn into 3D acquisition instruments,
allowing interactive reconstruction of 3D scenes. By repo-
sitioning a depth sensor and combining data from the differ-
ent viewpoints, a mobile 3D acquisition device can overcome
field-of-view limitations and create compelling, immersive
experiences [1].

Another key component of a mobile 3D acquisition sys-
tem is the computational requirements of creating 3D models
from depth data. In this paper, we propose a cloud-based sys-
tem for interactive 3D reconstruction using mobile depth sen-
sors. Like in [4], the user uploads raw data to the cloud for
processing. In our system, in addition to creating 3D mod-
els we also provide feedback to the user on the quality of the

captured data. This allows users to easily see which parts of
the 3D models are good and which parts can be improved.
Based on the quality feedback, users can then capture addi-
tional depth data which can in turn be fused with previously
captured data to produce a higher quality 3D model.

2. REALTIME DEPTH SENSING TECHNOLOGIES

To derive our quality feedback metric, we briefly review the
leading realtime depth sensing technologies, as well as related
work for combining a sequence of point clouds into larger 3D
models.

2.1. Structured Light

The sensor used in the Kinect is made by PrimeSense [5], and
captures a depth map by projecting a fixed pattern of spots
with infrared light [6]. An IR camera captures the scene il-
luminated with the dot pattern and depth can be estimated
based on the amount of displacement. Since the PrimeSense
setup requires a baseline distance between the light source
and camera, there is a minimum distance that objects need to
be at, resulting in a ‘dead zone’ of about 0.8m in the case of
the Kinect.

2.2. Per-pixel Time-of-flight.

A different class of depth sensors also uses infrared light
sources, but instead of using spatial light patterns they send
out temporally modulated IR light and measure phase shift
of the returning light signal. The Canesta [7] and MESA [8]
sensors employ custom CMOS/CCD sensors while the 3DV
ZCam [9] employ a conventional image sensor with a gal-
lium arsenide-based shutter. As the IR light sources can be
placed close to the IR camera these ‘time of flight’ sensors
are capable of measuring shorter distances.

2.3. Point Cloud Registration

Often it is desirable to piece together, or register depth data
captured from a number of different positions. For example,
to measure all sides of a cube, at least two depth maps cap-
tured from the front and back are necessary. While there are
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many techniques for aligning partially overlapping 3D points,
perhaps the most widely used technique are variations of the
Iterative Closest Point (ICP) algorithm [10]. At each step, the
algorithm finds correspondence between a pair of 3D points
and computes the rigid transformation which best aligns the
point clouds. Fig. 1 shows an example of ICP registration.
While it is typically rather computationally intensive, ICP op-
timized for GPUs [11] have reduced the computation time to
enable interactive operation. With GPU acceleration and ad-
ditional optimization, it has been shown that realtime interac-
tive registration is possible [1].

The GPU acceleration approach is appropriate for desk-
top or workstation-class settings. To realize the potential
of lightweight mobile depth sensing devices, we propose
that a cloud-based service for registering 3D points be em-
ployed. This approach has previously been used in the Pho-
toSynth [4], a photo sharing web site where users can upload
image collections of a scene and a cloud-based service ap-
plies structure-from-motion algorithms to recover a sparse set
of 3D points and allow users to navigate the photo collection
with an immersive 3D interface. We aim to provide a cloud-
based ICP service that in addition to aligning the point clouds
from mobile depth sensors, it provides interactive quality
feedback to guide users.
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Fig. 1. Point cloud registration with ICP.

3. QUALITY OF DEPTH MEASUREMENTS

Consider the two point clouds of the same object shown in
Fig. 2, captured using the same sensor. However it is clear
that the two point clouds are different, with the left column
showing a much higher quality data set than the right col-
umn. In particular, the left column has higher spatial density
and lower noise levels. Given that these were captured with
the same sensor, what caused the difference in the two point
clouds? We found that the quality of raw depth data cap-
tured is heavily influenced by the following factors: sensor
distance, sensor motion, and infrared signal strength.
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Fig. 2. Variations in the quality of captured depth: (a) and (b)
are 3D scans of the same object, captured with the same depth
sensor. (c) and (d) show cross section views of the same data.
Clearly data in the left column is denser and less noisy.

Sensor Distance Fig. 3 shows a simplified illustration of
how distances are measured in a structured light-based depth
sensor such as the PrimeSense product. The light source and
camera are positioned along the x-axis (drawn vertically),
with a baseline separation B. When the camera observes a
scene point at depth z illuminated by the light ray (drawn
horizontally), the light spot is projected onto a location with
coordinate x on the camera sensor. The geometry gives us the
following:

B+x
z = x

F

F (B + x) = zx

FB = x(z − F )

x = FB
z−F

dx
dz = −zFB

z2 = −FB
z (1)

Equation (1) shows that as the scene point distance z goes
to infinity, the rate of change in observation coordinate goes to
0. This shows that a structured light-based depth sensor mea-
suring distances by triangulation becomes less precise with
distance, and therefore more susceptible to noise. Per-pixel
time-of-flight sensors do not use triangulation, but instead
rely on measuring the intensity of returning light. Of course,
the intensity of light is inversely proportional to the square of
the distance from the source.

Sensor Motion Relative motion between the sensor and
the scene can also degrade depth measurements. In the case
of structure light sensors, observations of the light spots may
become blurred, making detection difficult and also making
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Fig. 3. Geometric relationships in a structured light setup.

localization less precise. In the case of TOF sensors, motion
violates the assumption that each pixel is measuring a single
scene point distance.

Signal Strength In addition to light fall off with distance,
different parts of the scene may reflect varying amounts of
infrared light that the sensors need to capture. If an object
absorbs and does not reflect IR light, it becomes challenging
for structured light sensors to observe the light spots. For TOF
sensors, the diminished intensity reduces the precision of the
sensor.

4. INTERACTIVE QUALITY FEEDBACK

For experiments we constructed a prototype mobile 3D cap-
ture device using a notebook computer and a PrimeSense-
based depth sensor. The system, shown in Fig. 4, captures a
sequence of depth maps which is then sent to a server for reg-
istration. The resulting reconstruction along with the depth
map quality feedback information is sent back to the device
for display.

Fig. 4. Experimental mobile sensing setup.

In order for the user to know which parts of the 3D scene
needs more careful, closeup capture, we need a way to visu-
ally indicate the regions of the depth map with the highest un-
certainty. However as discussed in the previous section, there
are systematic sources of uncertainty in depth sensor mea-
surements. Therefore if we simply use the variance in depth

measurement for quality feedback, the resulting feedback as
shown in Fig. 5(a) often is not very useful. Instead we use the
following metric for each position x in a depth map:

Uncertainty(x) =
var(x)

x̄2 + ε
(2)

Where x̄ = mean(x). In our experiments we set ε =
0.001. This offsets the systematic uncertainties and pro-
duces the quality map in Fig. 5(b). Discarding points beyond
a manufacturer-rated maximum measurable distance and
thresholding the quality map at the 70 percentile gives us
the red marker positions, which corresponds to parts of the
scene with high levels of uncertainty, as shown in Fig. 5(c).
Fig. 6(b) shows a second, closeup capture of one of the parts
of the scene with high uncertainty. The second capture was
able to recover the finer-scale features.
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Fig. 5. Depth quality measure feedback. Red circles indicate
regions with (a) high variance (b,c) low quality.

For visualizing the 3D points, we use a voxel representa-
tion [12]. Each voxel is colored according to the maximum
uncertainty of 3D points the voxel contains. This allows the
user to incrementally build the 3D model, guided by feed-
back, and registered with ICP in the cloud.

5. DISCUSSION AND FUTURE WORK

We have presented a experimental system for 3D recon-
struction, guided by a quality feedback measure which takes
into account the systematic uncertainties inherent in realtime
depth sensors. This results in an intuitive, highly usable
cloud-based system which allows users to efficiently build
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Fig. 6. Feedback-guided 3D reconstruction.

large 3D models. In the near future, ICP-type applications
can be run in real-time in the cloud providing low-latency
quality feedback to the user. While we have described a
number of sources of uncertainties that can be incorporated
into the quality metric we have not exploited all of them. For
example, some sensors provide a confidence measure based
on signal strength and other sensors commonly available on
mobile devices can also be used to improve the visual feed-
back. Emerging depth sensors such as [13] can also leverage
a cloud-based system for computing the depth maps, and for
these sensors the deeper algorithmic integration may allow
even richer feedback to be provided to users.
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