
LIGHT FIELD COMPRESSIVE SENSING IN CAMERA ARRAYS

Mahdad Hosseini Kamal, Mohammad Golbabaee and Pierre Vandergheynst

Signal Processing Laboratory (LTS2), Ecole Polytechnique Fédérale de Lausanne (EPFL), Switzerland

E-mail:{mahdad.hosseinikamal, mohammad.golbabaei, pierre.vandergheynst}@epfl.ch

ABSTRACT

This paper presents a novel approach to capture light field in cam-
era arrays based on the compressive sensing framework. Light fields
are captured by a linear array of cameras with overlapping field of
view. In this work, we design a redundant dictionary to exploit cross-
cameras correlated structures to sparsely represent cameras image.
Our main contributions are threefold. First, we exploit the correla-
tions between the set of views by making use of a specially designed
redundant dictionary. We show experimentally that the projection of
complex scenes onto this dictionary yields very sparse coefficients.
Second, we propose an efficient compressive encoding scheme based
on the random convolution framework [1]. Finally, we develop a
joint sparse recovery algorithm for decoding the compressed mea-
surements and show a marked improvement over independent de-
coding of CS measurements.

Index Terms— Redundant Dictionary, Compressive Sensing,
Light Fields, l1-minimization.

1. INTRODUCTION

The growing flood of data, particularly due to the emergence of im-
age processing systems with multiple visual sensors, causes an in-
creasing need to quickly process large data sets in compressed do-
main. Moreover, advances in computational photography provides
novel methods to acquire and process images. Newly introduced
light field cameras are one of the widely used class of computational
cameras. The light field cameras capture the most complete rep-
resentation of the scene, the so-called plenoptic function [2]. The
plenoptic function is a 5D function that models the amount of light
rays a perfect observer records at any position, direction, time and
wavelength in free space. A number of light field cameras have been
designed to capture a subset of the plenoptic function. By captur-
ing a set of images in the space, we can reconstruct samples of the
plenoptic function, which later can be used for depth calculation or
other applications like image based rendering.
The most common plenoptic cameras are those using 1D/2D cam-
era arrays like multi-camera arrays [3]. However, capturing the light
fields leads to a large amount of data, which reveals the importance
of adapting an intelligent acquisition method that relies on the prop-
erties of the camera networks. We consider a plenoptic camera,
which consists of array of k equally spaced cameras, to capture the
light rays coming from a scene like in Fig. 1. In order to repre-
sent camera outputs, we stack all images to have an image volume
X ∈ R

i×j×k as shown in Fig. 2(a) in which each slice of size i× j
corresponds to an image observed by the corresponding camera.
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Fig. 1: Original scene.

In order to tackle the large amount of data produced by plenoptic
cameras, we should consider a compression method. Compressive
Sensing is a popular compression method that has superiority over
traditional schemes because of low complexity in the encoder and
universality with respect to scene model. Compressive sensing dic-
tates to recover a signal x ∈ R

n from many fewer measurements
m � n than the traditional methods, provided that the signal is
sparse or compressible in some basis Φ. The compressive sensing
measurements are formed by taken inner product between the sig-
nal and a random measurement matrix. The measurements can be
expressed as

y = Ax, (1)

where y ∈ R
m is the measurements vector and A ∈ R

m×n is the
measurement matrix. An approach to recover x from y is l1 mini-
mization in which we solve the following convex problem:

argmin
α∈Rn

‖α‖1 subject to y = AΦα (2)

and x is obtained from x = Φα. In short, the above algorithm
looks for the set of transform coefficients α such that the measure-
ments from the corresponding signal Φα match the measurements
y. To insure a successful recovery for x, the measurement matrix A
should satisfy the uniform uncertainty principle [4, 5, 6]. More pre-
cisely, the measurement matrix should have a small restricted isome-
try constant δ. The restricted isometry constant for a S-sparse signal
x is

(1− δS)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δS)‖x‖22. (3)

The simplest construction uses random sensing matrices with en-
tries generated independently according to a subgaussian distribu-
tion, like independent and identically distributed (i.i.d) Gaussian
or Bernoulli/Rademacher (random ±1). The compressive sensing
theory for this type of measurement matrices and a S-sparse signal
in Φ implies that with m ≥ O(S log n/S) measurements we can
reconstruct the signal.
In this paper, we present a novel compressive acquisition scenario
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Fig. 2: (a) Image volume. (b) (i, k)-plane slice of the image volume.

for the light field images. We design a redundant dictionary based
on corss-correlations of cameras image to take advantage from the
local and non-local structures in the camera array.

2. CAMERA ARRAY ACQUISITION SCHEME

The large amount of data and practical limitations in camera array
highlight the importance of employing a computationally tractable
measurement system. To have a feasible measurement matrix, we
use the Random Convolution strategy explained in the work of J.
Romberg [1] for each camera. A different physical realization of
this sensing matrix is also discussed in [7]. In short, the method
subsamples m random values of the signal x circularly convolved
with a random filter. It is proved that a S-sparse signal x is recovered
by m ≥ O(S log n/δ) δ ∈ [0, 1] measurements.
We acquire the measurements on camera p by yp = Apxp, where
yp ∈ R

m represents the measurement vector, Ap ∈ R
m×n denotes

the random convolution sensing matrix on the camera, and xp ∈ R
n

with n = i · j is the vectorized representation of the corresponding
camera image. The signal and measurement ensemble of the camera
array are represented as

X =

⎡
⎢⎢⎢⎣
x1

x2

...
xk

⎤
⎥⎥⎥⎦ , Y =

⎡
⎢⎢⎢⎣
y1
y2
...
yk

⎤
⎥⎥⎥⎦ , A =

⎡
⎢⎢⎢⎣
A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . Ak

⎤
⎥⎥⎥⎦ ,

(4)

where X ∈ R
kn, Y ∈ R

km, A ∈ R
km×kn and 0 is zero matrix

with appropriate size. The measurement vector ensemble is summa-
rized as

Y = AX. (5)

3. RECOVERY SCHEME

Cameras image can be recovered by two different approaches. In the
first compression method, we reconstruct each camera image sepa-
rately. Cameras are placed in such a way that they have a large over-
lapping field-of-view. Therefore, the captured images from a camera
to the others are highly correlated. The separate recovery approach
can benefit from image structures in each camera but it does not con-
sider any correlation among cameras in the camera network. The 2D
wavelet transform is the distinguished sparsity domain for cameras
image. Since in the acquisition and reconstruction phase cameras do
not collaborate, consequently, the recovery algorithm for each cam-

era p is summarized as

argmin
up∈Rn

‖up‖1 subject to ‖yp −ApΦup‖2 ≤ εp, (6)

where Φ is 2D wavelet transform matrix and εp is the measure-
ment noise. The corresponding camera image is then recovered by
xp = Φup.
In the second approach, we are going to exploit both intra- and inter-
camera correlated structures in images. The framework leads to ex-
ploit the amongst camera correlations to jointly recover the images
from the measurement vector ensemble and generalizes the notion of
a sparse signal in some basis to the concept of signal ensemble that
are jointly sparse in some domain. In this notion, each signal itself
is sparse in a basis, so we could benefit from the compressive sens-
ing theory to encode and decode each signal separately. However,
this approach relies on joint sparsity [8], which is stronger than the
aggregated sparsity of individual signals. As a result, the joint recov-
ery strategy leads to a reduction in the number of required measure-
ments. The only challenge for this framework is to find a sparsity
domain for the signal ensemble X .
By the emergence of redundant dictionaries in compressive sensing,
we can hope for such a dictionary in which the signal ensemble is
sparsely represented. A well-designed dictionary can benefit from
the data regularity in the network to sparsely represent the signal
ensemble. The combination of such a dictionary with our joint re-
covery scheme leads to consider both local and non-local structures.
Therefore, the number of required measurements will be decreased.

4. COMPRESSIVE SENSING WITH REDUNDANT
DICTIONARIES

The emerging framework of compressive sensing assures that a
signal can be accurately recovered from much smaller number of
measurements than required by traditional methods [9]. As we ex-
plained, the compressive sensing technique holds for signals that
are sparse either in their standard coordinate or in any orthogonal
basis, thus it is important to find a set of basis functions that can
best represent structures in signals. Although bases such as Fourier
and wavelet can provide a good representation of signals, they are
generic and not specific enough to very restrictive class of signals.
An alternative signal representation is to consider an overcomplete
dictionary D ∈ R

n×d with d > n.
In an overcomplete dictionary the signal decomposition is not
unique, but this allows to finely adapt the dictionary to the ex-
pected signal structures, i.e. choosing among many representations
the one that has the sparsest possible representation of the signal.
It has been shown in [10, 11] that the compressive sensing techniques
for orthogonal bases can be extended to signals that are not sparse in
bases but rather in redundant dictionaries. Given a suitable sensing
matrix the procedure identifies the sparsest coefficient sequence θ
of the signal x in the redundant dictionary D, i.e. x = Dθ. An
approach to recover x is by solving the following convex problem:

argmin
θ∈Rd

‖θ‖1 subject to ‖y −ADθ‖2 ≤ ε (7)

4.1. Dictionary Design

The geometric features of a signal are the heart of dictionary design.
It is known that wavelets give the opportunity to compress piecewise
smooth images. For example, a stair-like image similar to Fig. 3(a)
can be potentially compressed by 2D wavelet transform, but indeed
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Fig. 3: The reordering example in stair-like images. (a) Original stair-like
image. (b) Parallel reordering lines Lη to capture regularity along direction
η. (c) Reordered 2D stair-like image along Lη .

the regularity along the directions motivates the design of a more
intelligent domain to exploit these structures in the image. Our
goal is to include anisotropic redundancy that cannot be captured
by a simple 2D wavelet transform and use a dictionary to sparsely
represent the image.
A piecewise constant function is sparsely represented in the 1D
wavelet domain. Therefore, for stair-like images it would be best to
consider the reordered version of the image grid to have a piecewise-
constant-like images [12].
The reordering process is described by selecting a direction η, which
is as parallel as possible to the real geometry of the curve. As it is
shown on Fig. 3(b), we select grid points Lη and reorder the im-
age grid according to the indices of image samples on these lines
Fig. 3(c). Afterwards, we make a piecewise smooth 1D discrete
function f from the reconstructed image, which can be sparsely
represented using 1D wavelet domain.
If we compare the coefficients of the stair-like image in the simple
2D wavelet and reordered 1D wavelet domains, we can see a great
improvement induced by our scheme. This also reveals the im-
portance of considering image geometry in designing a dictionary.
Fig. 4 contrasts the representations in 1D and 2D wavelet transform.
Selecting a proper direction η for reordering lines has a direct effect
on sparsity of the represented signal. The 1D wavelet transform
itself provides an efficient way to distinguish the appropriate direc-
tion. An inadmissible direction for the reordering process increases
the number of 1D wavelet coefficients as demonstrated in Fig. 5.
The best η is the one that leads to the sparsest representation of the
signal.
In the case of stair-like images with different directions, we do not
have a preferential orientation. Thus we cannot represent a sparse
image with just one direction, but we can benefit from a redundant
dictionary, which consists of the concatenation of several reordered
wavelet transform Φr with different directions η. The union of
bases redundant dictionary Ψ =

[
Φr

1,Φ
r
2, · · · ,Φr

γ

]
is destined

to profit from different reordering directions. Therefore, it will ex-
ploit the geometry induced by the natural correlations within light
field images. We should consider that given too many reordering
directions will not result in a unique sparsest representation, since
as the correlation between dictionary atoms is increased the process
cannot decide which atom to choose. Moreover, choosing too many
directions leads to a huge dictionary which is not efficient.
In the camera array scenario, as shown in Fig. 2, the image volume
X would have stair-like structure along (i, k)-plane. Thus, once
the dictionary Ψ has enough angular resolution (number of differ-
ent directions γ), X can be efficiently represented by few sparse
coefficients along (i, k)-plane. In addition, a suitable 1D wavelet
transform can be applied to sparsify X along the remaining dimen-
sion j. This comes from the fact that natural 2D images typically
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Fig. 4: Left: 2D wavelet coefficients of a stair-like images. Right: 1D wavelet
coefficients of the reordered 1D discrete function.
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Fig. 5: Influence of choosing inappropriate directions on 1D wavelet coeffi-
cients on the reordered 1D discrete function.

have piecewise smooth variations along both dimensions i and j.
To achieve an efficient representation, we reshape X into a matrix

X̂ ∈ R
ik×j whose columns contain the information of (i, k)-planes.

Following the discussion above, there exists a sparse matrix of co-

efficients Θ ∈ R
γik×j such that X̂ = ΨΘΓT where Ψ ∈ R

ik×γik

is the previously defined dictionary transform along (i, k)-plane and
Γ ∈ R

j×j denotes the 1D wavelet basis along j dimension. Thus, if

we rewrite X̂ and Θ matrices in vectorial format, we will have

X̂vec = ΩΘvec, (8)

where Ω ∈ R
nk×γnk is the dictionary that is applied to encode the

whole image volume into a sparse vector Θvec and its 3D dimen-
sions. Note that a simple calculation reveals that Ω = Ψ⊗Γ, where
⊗ denotes the Kronecker product between two matrices.
Once we have designed the proper dictionary to efficiently encode
the image volume into few sparse coefficients, the following con-
vex problem can be applied to reconstruct X from the compressive
measurements,

argmin
Θvec∈Rγnk

‖Θvec‖1 subject to ‖Y − ÂΩΘvec‖2 ≤ ε. (9)

Here Â contains the same elements as A, and is reshaped with re-

spect to X̂vec = ΩΘvec so that ÂX̂vec = AX . Not that this opti-
mization can be solved iteratively using Douglas-Rachford splitting
method [13] and it basically consists of alternating between a shrink-
age operator (soft thresholding) and projection onto the convex set

‖Y − ÂΩΘvec‖2 ≤ ε, until converging to the solution.

5. EXPERIMENTAL RESULTS

To demonstrate the effectiveness of our acquisition model, we gen-
erated a synthetic scene shown in Fig. 1. We captured the scene by
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Fig. 6: Reconstruction of a camera image with separate recovery and our joint recovery scheme, by randomly sampling of each camera by 25% of its image
size. The results reveal the superiority of our scheme by about 3dB.(a) Original image. (b) Reconstruction with separate recovery scheme. (c) Reconstruction
with joint recovery scheme.

k = 40 equally distanced cameras with resolution of 256×256. Fol-
lowing our aforementioned acquisition scheme, we used the random
convolution measurement matrix to randomly sample each camera
image by 25% of the camera original image size, i.e. m = 0.25n.
For the redundant dictionary, we take 3 different reordering direc-
tions to capture cameras image regularities.
In order to further evaluate our joint recovery scheme, we reconstruct
each camera image with two different recovery algorithms. First, we
separately reconstruct each camera image by solving (6), which only
benefits from the sparse representation of the (i, j)-planes in a 2D
wavelet basis Φ. Therefore, we do not incorporate any intra-camera
correlated structures. Second, we apply our joint recovery algorithm
(9) in order to benefit from both inter-/intra-camera structures.
Fig. 6 compares the recovery performance of both algorithms on one
camera to the original image. One of the images is reconstructed sep-
arately without benefiting from any cross-camera correlation, while
the other one is reconstructed by our joint recovery algorithm in or-
der to exploit cross-camera correlations. As we can see, with the
same number of measurements, our joint recovery scheme looks
more similar to the original image. In average the joint recovery
scheme overtakes the separate recovery approach by about 3dB.
This highlights the role of our designed redundant dictionary, which
results in exploiting correlated structures in the camera array.

6. CONCLUSION

This paper represents a novel approach to capture the light fields
in a camera array based on sparse representations in redundant dic-
tionaries. We developed a reconstruction algorithm which exploits
the high degree of correlations in camera network and have shown
that the complete light field image can be reconstructed using only
few measurements. The proposed algorithm relies on the random
convolutions scheme and can be implemented on existing hardware.
Finally, simulated experiments demonstrated the potential interest of
our proposed scheme.
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