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ABSTRACT

This paper investigates analysis operator learning for the recently in-
troduced cosparse signal model that is a natural analysis complement
to the more traditional sparse signal model. Previous work on such
analysis operator learning has relied on access to a set of clean train-
ing samples. Here we introduce a new learning framework which can
use training data which is corrupted by noise and/or is only approx-
imately cosparse. The new model assumes that a p-cosparse signal
exists in an epsilon neighborhood of each data point. The operator is
assumed to be uniformly normalized tight frame (UNTF) to exclude
some trivial operators. In this setting, an alternating optimization
algorithm is introduced to learn a suitable analysis operator.

Index Terms— Sparse Approximation, Analysis Framework,
Cosparse Signal Model, Analysis Operator Learning, Douglas-
Rachford Splitting

1. INTRODUCTION

The linear sparse model is a suitable low-dimensional model for
many natural signals. A discrete signal y ∈ R

m is called sparse
when we can represent y using a vector x ∈ R

n, with few non-zero
elements, and a linear overcomplete transform Φ ∈ R

m×q m < q,
called the dictionary, as follows

y = Φx. (1)

This has also been called the synthesis parsimony model [1]. AsΦ is
overcomplete, the model is underdetermined and for many reasons
a convex sparsity penalty, i.e. �1(x) := ‖x‖1 =

P
|xi|, has been

used to recover the sparse coefficients x.
The formulation (1) is an ideal model which often does not pre-

cisely fit to the real world signals either because the signal is noisy
or is only approximately sparse. A standard approach to compen-
sate the effect of noise and/or model mismatch, is to assume that the
noise is Gaussian and the signal is within an ε neighborhood of the
observation. The linear constraint can then be relaxed to give the fol-
lowing convex program, called Basis Pursuit Denoising (BPDN) [2],

min
x

‖x‖1 s. t. ‖y − Φx‖2 ≤ ε. (2)

A better approximation is sometimes possible by subsequently pro-
jecting y onto the span of the columns of Φ in the support of x: a
technique known as debiasing.
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1.1. Dictionary Learning

In many instances the appropriate dictionary Φ is not known and
must be learnt from training data Y = [yi]i∈I ∈ R

m×L [3]. One
approach to synthesis dictionary learning is to solve (2) in a matrix
form and apply a constraint on the dictionary to exclude trivial solu-
tions, as follows:

min
X,Φ∈D

‖X‖1 s. t. ‖Y − ΦX‖2 ≤ ε. (3)

Such an optimization has been dealt with in [4]. As Φ does not ap-
pear in the objective, many alternating optimization methods have
difficulties with this formulation and they use a Lagrangian multi-
plier version of (3), see for example [5–8] and references therein.

1.2. Cosparse and Approximately Cosparse Models

An alternative low-dimensional signal model is the analysis parsi-
mony model [1]. In this setting, there exists an overcomplete analy-
sis linear operator Ω ∈ R

N×m, which maps the signals y ∈ R
m to

low-dimensional subspaces of a higher-dimensional analysis space
R

N [9]. In other words, z = Ωy, where z has many zero elements,
i.e. ‖z‖0 = N − p, where p is the number of zero components. The
integer p, which is called the cosparsity of y [9], has an important
role in the analysis of signal recovery in linear inverse problems.

Similar to the synthesis framework, most of the real world sig-
nals are not exactly cosparse: some noise corrupts the observations
and there are also some model mismatches. It suggests an approxi-
mate cosparse model like z ≈ Ωy where z is cosparse and the ac-
curacy of the approximation depends on the noise/model mismatch
level. In other words, the model assumes that some cosparse sig-
nal ey, such that z := Ωey has many zero elements, is within an ε
neighborhood of y, i.e. ‖ey − y‖2 ≤ ε [10].

1.3. Analysis Operator Learning (AOL)

Unlike the synthesis framework, there is very little work on adapt-
ing the analysis model to a set of sample data Y. Recent works that
have begun to investigate this problem are [11–13]. The main dif-
ficulty in the analysis operator learning is avoiding trivial solutions
emerging from the learning process. [13] randomly cycles through
the training samples and [11] implicitly constraints the operator up-
date, to indirectly avoid such trivial solutions. Alternatively a con-
strained optimization approach has been presented in [12] that avoids
most trivial solutions. One restriction of the AOL method of [12] is
that it requires noiseless co-sparse data that exactly follow the model
z = Ωy. Removing this restriction is the goal of the present paper.
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2. CONSTRAINED ANALYSIS OPERATOR LEARNING

Cosparse signals, by definition, have a large number of zero elements
in the analysis space. One proposal for adapting an operator to a set
of signals Y is to maximize the number of zeros of ΩY or equiv-
alently minimized the number of non-zero elements. The algorithm
presented in [12] uses this approach along with the �1 convex surro-
gate function for measuring sparsity. If we do not apply a constraint
on the operator then trivial solutions such as Ω = 0 will invariably
exist. It is explained in [12] why some simple constraints like row
norm, row norm plus full-rank and the tight frame constraints do not
resolve the issue. Instead, a constraint C called Uniform Normalized
Tight Frame (UNTF) was proposed to simply exclude such trivial
solutions. The constrained AOL can then be reformulated as,

min
Ω

‖ΩY‖1 s. t. Ω ∈ C (4)

where,

C = {Ω ∈ R
N×m : Ω

T
Ω = I, ∀i ‖ωi‖2 = c}, (5)

and ωi is the ith row ofΩ. As ‖·‖1 is continuous and C is not convex,
(4) may have many separate local optima. A projected sub-gradient
based iterative method is presented in [12] to find a local minimum.
For convenience the procedure is summarized in Algorithm 1, where
sgn is an entrywise version (i.e. {sgn(A)}i j = sgn(Ai j)) of the
sign function which is defined by sgn(a) = sgn(a) when a �= 0
and sgn(a) = [−1, 1] otherwise. The notations PUN (resp. PTF )
refer to projections onto the set of uniformly normalized (resp. tight
frame) matrices, cf [12].

The simulations in [12] show that when the signals are cosparse
enough, i.e. many zero elements in each Ωyi, generic analysis op-
erators can be recovered using this framework.

2.1. Noise Aware AOL (NAAOL) Formulation

When the signal y is noise corrupted or only approximately cosparse
an approximate signal by, also called the denoised signal, can be
found using an analysis denoising formulation as follows,

min
by

‖Ωby‖1 +
λ

2
‖by − y‖2

2, (6)

where parameter λ regulates the level of noise/model missmatch.
Such a noisy formulation motivates us to further extend the AOL
framework to consider noise and approximate cosparsity. This leads
to an optimization problem with two parameters bY andΩ as follows,

min
Ω, bY

‖Ω bY‖1 +
λ

2
‖ bY −Y‖2

F s. t. Ω ∈ C. (7)

We use the constraint C defined in (5), since the new formulation
still has the same set of trivial solutions. Problem (7) is a non-convex
optimization problem on the intersection of two manifolds, which
is generally difficult to solve. A practical algorithm to find a local
minimum of (7) is presented next.

2.2. Noise Aware AOL Algorithm

It is clear that the NAAOL problem can be simplified to the AOL
problem, if bY is known. Alternatively, if we know the optimal op-
erator Ω, bY can easily be found using a convex program. However,
the size of the problem makes such an optimization challenging. The
main difficulties are that �1 is not differentiable and the existence of

Algorithm 1 Projected Subgradient Based AOL (Operator Update)
Input: Y,Kmax,Ωin, stepsize η, threshold ε� 1

1: initialization: k = 1, Ω[0] = 0, Ω[1] = Ωin

2: while ε ≤ ‖Ω[k] − Ω[k−1]‖F and k ≤ Kmax do
3: ΩG = ∂f(Ω[k]) = sgn(Ω[k]Y)YT

4: Ω[k+1] = PUN

n
PTF

n
Ω[k] − η ΩG

oo
5: k = k + 1
6: end while
7: output: Ωout = Ω[k−1]

Ω inside the �1 penalty does not allow us to use conventional meth-
ods for solving problems like (2). We here use the Douglas-Rachford
Splitting (DRS) technique to efficiently solve (7) when Ω is fixed,
here it is also called the alternating direction method of multipliers
(ADMM), see [14] for a brief overview. This technique has been
used for approximation with the Total Variation (TV) penalty and
analysis sparse approximation in [15] [16]1. We here only present a
simple version of the DRS technique, tailored for this problem. A
new parameter bZ := Ω bY is defined, such that the optimization with
respect to bZ is easier. Now the problem is a constrained (but still
convex) program with two parameters bZ and bY as follows,

min
bY,bZ

‖bZ‖1 +
λ

2
‖bY − Y‖2

F s. t. bZ = Ω bY. (8)

The Augmented Lagrangian (AL) [18] method is applied to
solve (8). In the Lagrangian multiplier method we use the dual pa-

rameter B ∈ R
N×L and add a penalty term,

D
B,Ω bY − bZE

. In the

AL, we also add an extra quadratic penalty related to the constraint
and derive the new objective ψ( bY, bZ,B) as follows,

ψ( bY, bZ,B)

= ‖bZ‖1 +
λ

2
‖ bY − Y‖2

F + γ
D
B,Ω bY − bZE

+
γ

2
‖Ω bY − bZ‖2

F

= ‖bZ‖1 +
λ

2
‖ bY − Y‖2

F +
γ

2
‖B + Ω bY − bZ‖2

F −
γ

2
‖B‖2

F

where 0 < γ ∈ R
+ is a constant parameter. According to the du-

ality property, the solution of maxB minbZ,cY
ψ( bY, bZ,B) coincides

with the solution of (8). Using the DRS method, we iteratively op-
timize a convex/concave surrogate objective ψs( bY, bZ,B,B[n]) =

ψ( bY, bZ,B) − ‖B − B[n]‖2
F , where B[n] is the current estimation

of B. The fixed points of the iterative updates of ψs( bY, bZ,B,B[n])

are the same as ψ( bY, bZ,B), as the extra term ‖B−B[n]‖2
F vanishes

in any fixed points. ψs( bY, bZ,B,B[n]) is convex with respect to bZ
and bY and concave with respect toB. We can thus iteratively update
each of the parameters, while keeping the rest fixed, as follows,

bY[n+1] = (λI + γ Ω
T
Ω)−1(λY + γ Ω

T (bZ[n] − B
[n]))

bZ[n+1] = S 1

γ

n
Ω bY[n+1] + B

[n]
o

B
[n+1] = B

[n] + (Ω bY[n+1] − bZ[n+1]),

(9)

where Sα, with an α > 0 , is the entrywise soft-threshold operator
defined by Sα(β) = β − α sgn(β) if |β| ≥ α and 0 otherwise.

1 [16] derives the formulation by incorporating the Bregman distance.
However, it has been shown that the new method, called Alternating Bregman
Splitting method, is the same as DRS applied to the dual problems [17].
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Algorithm 2 Noise Aware Analysis Operator Learning (NAAOL)
Input: Y,Kmax, Ωin, η, ε � 1, λ, γ
1: initialization: k = 1, Ω[0] = 0, Ω[1] = Ωin

2: while ε ≤ ‖Ω[k] − Ω[k−1]‖F and k ≤ Kmax do
3: Operator update from Algorithm 1.
4: while not converged do
5: Parameters update with (9).
6: end while
7: k = k + 1
8: end while
9: output: Ωout = Ω[k−1]
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Fig. 1. Signals in the analysis space R
N ,N = 128. The coefficients

with almost zero magnitude, i.e. less than 0.01, are indicated with
stars. The cosparsity in each case is: (a) p = 0, (b) p = 1, and (c)
p = 27.

Note that the update formula for bY involves a matrix inversion,
which is computationally expensive. Here Ω is a tight frame and
the matrix inversion is thus significantly simplified using the fact
that ΩTΩ is identity. In this case, the operator (λI + γ ΩT Ω)−1 is
simply a scaling with 1

λ+γ
.

We iterate (9) for a number of iterations or until the parameters
cease to change significantly. Although the convergence of the it-
erative updates (9) can individually be investigated, it can also be
deduced using the fact that it is a special case of DRS, which con-
verges under mild conditions. Such an iterative algorithm only finds
the solution of (8) and needs to be combined with the Operator Up-
date (OU) of Algorithm 1. A pseudocode for the full NAAOL is
presented in Algorithm 2.

3. SIMULATION RESULTS

For our experiments we used a set of face images, which are centred
and cropped [19]. Such images can be modeled as approximately
piecewise smooth signals. A pseudo-random admissible Ω[0] ∈
R

128×64 has been used as an initial analysis operator and a train-
ing set of size L = 131072 of 8 × 8 image patches (m = 64) from
13 different faces, have been used to learn the operators (N = 128).

We applied both of the AOL and the NAAOL algorithms to
demonstrate how much the cosparsities of the training samples
increase using the noise aware formulation. AOL was iterated
Kmax = 4000 times and NAAOL iterated forKmax = 10 iterations
with λ = γ = 0.5, while the inner-loop, i.e. Algorithm 1, was
iterated 100 times.
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Fig. 2. The cosparsities of y (bottom plot) and by (top plot) respec-
tively with the operators learned with AOL and NAAOL.

A plot of the analysis coefficients for an example y along with
its corresponding cosparsities, with three different Ω, are presented
in Figure 1. The initial operator Ω0 = Ω[0] has been used with y in
(a). Not surprisingly, the signal is not cosparse with this arbitrary
operator (p = 0). In (b), the same plot is drawn using the learned
operator with AOL. Although some coefficients are small, most are
not zero, and p = 1. In the last plot, we have shown the analysis
coefficients for by using the learned operator with NAAOL. It is clear
that the cosparsity has been increased significantly (from p = 1 to
p = 27). We have further plotted the cosparsities of the first 256
training samples y’s using the learned operator found by AOL and
corresponding approximations by’s, which are found by NAAOL, in
Figure 2. This figure also shows, the operator learning (7) using the
noise aware formulation (6) results in much greater cosparsity.

The aim of second experiment is to denoise the image using a
learned operator and a TV-type operator. We keep using the settings
of the first experiment. The learned operator and the finite difference
operator can now be used to denoise a corrupted version of another
face from the database, using (6). The original face is shown in Fig-
ure 3 (a) and the noisy version with additive i.i.d Gaussian noise, is
shown in (b). Denoising was performed using two different regular-
ization settings: (λ = γ) = 0.3, 0.1. The bottom two rows show
the denoised images using the TV-type operator and the learned dic-
tionary. We can visually conclude that the two operators successfully
denoise the corrupted images with some slight differences. The re-
sults with the learned operators are smoother (this is mostly visible
on a screen rather than a printed copy of the paper).

As the initial goal was to increase the cosparsities of the sig-
nals, we have also shown the cosparsities of different patches of the
selected face image. The horizontal axis presents the index num-
ber of the patches. To compare the cosparsity using these operators,
we have plotted their differences and its average in the bottom plot.
Negative values here demonstrates the cases when the finite differ-
ence operator is a better operator than the learned operator. The
average, which is indeed negative, is plotted as a horizontal line. As
a result, although the learned operator performs reasonably well, the
finite difference still provides cosparser signals.

4. CONCLUSION

This paper presents a novel framework to learn an analysis operator
which can be used for low-dimensional modeling of sample data.
The new framework has the feature that it can account for the effects
of noise and model mismatch within the training data. This fact
improves the robustness of the previous AOL [12]. The proposed
framework is based on alternatively updating the operator and the
approximations of signals. The operator can be updated using the
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(a) (b)

(c) (d)

(e) (f)

Fig. 3. Face image denoising. Top row: original face (left), noisy
face (right). Denoising results using (6). Middle row: λ = 0.3 using
the learned analysis operator (left) and the finite difference operator
(right). Bottom row: same as middle row with λ = 0.1.

previously proposed algorithm for AOL while a new fast algorithm
for solving the signal approximation has been proposed.

Two preliminary experiments are presented. The result of the
first experiment demonstrates the ability of the new algorithm to
compensate for model mismatch in the proposed framework. In the
second experiment, we demonstrated the operator learning in a de-
noising application. Although the finite difference operator, which
is known to be very successful for denoising of piecewise constant
images, still performs better than the learned operator, the proposed
operator learning scheme shows a promising result. For the signals
where we do not know of any suitable operator, the proposed tech-
nique may provide some insight into this difficult low-dimensional
modeling problem.
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Fig. 4. Cosparsities of image paches (a)-(b) and a comparison (c).
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