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ABSTRACT

The synthesis-based sparse representation model for signals has
drawn a considerable interest in the past decade. Such a model
assumes that the signal of interest can be decomposed as a linear
combination of a few atoms from a given dictionary. In this paper
we concentrate on an alternative, analysis-based model, where an
Analysis Dictionary multiplies the signal, leading to a sparse out-
come. Our goal is to learn the analysis dictionary from a set of sig-
nal examples, and the approach taken is parallel and similar to the
one adopted by the K-SVD algorithm that serves the correspond-
ing problem in the synthesis model. We present the development
of the algorithm steps, which include two greedy tailored pursuit
algorithms and a penalty function for the dictionary update stage.
We demonstrate its effectiveness in several experiments, showing
a successful and meaningful recovery of the analysis dictionary.

Index Terms— Sparse Representations, Analysis Model,
Backward Greedy (BG) Pursuit, Dictionary Learning, K-SVD.

1. INTRODUCTION

Signal models are fundamental for handling various processing
tasks, such as denoising, solving inverse problems, compression,
sampling, and more. A very popular approach to signal modeling
is the synthesis-based sparse representation model, where a signal
x ∈ R

d is assumed to be composed as a linear combination of a
few atoms from a given dictionary D ∈ R

d×n [1, 2]. The main
activity in studying this model concentrated so far on estimating
the representation from a corrupted signal and learning the dictio-
nary D from signal examples. A popular technique for dictionary
learning is the K-SVD algorithm [3], which leads to state-of-the-
art results in various image processing applications [2].

While the synthesis model has been intensively studied, there
is an analysis viewpoint to sparse representations that has been left
aside almost untouched [4]. The analysis model relies on a linear
operator (a matrix) Ω ∈ R

p×d, which we will refer to as the anal-
ysis dictionary. The key property of this model is our expectation
that the analysis representation vector Ωx ∈ R

p is supposed to be
sparse with � zeros, and these zeros define the subspace this signal
belongs to. While this may sound similar to the synthesis coun-
terpart approach, it is in fact very different when dealing with a
redundant dictionary, which means that p > d.

Until recently, relatively little was known about the analysis
model, and little attention has been given to it in the literature,
compared to the synthesis counterpart model. In the past few years
this trend has started to change [5–9]. In this paper we focus on
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the analysis model and concentrate on the development of an al-
gorithm that would learn a possibly redundant analysis dictionary
Ω from a set of signal examples. The objective is to find a suitable
dictionary Ω so that the analysis coefficients for all the signals in
the training set are adequately sparse.

Analysis dictionary training is a challenging problem in signal
modeling, with origins in the pioneering work of Black and Roth
[10], which trained an analysis sparsity-based image prior. Note
however that their approach assumes an underdetermined dictio-
nary (p < d), in contrast to our work. The problem of learning an
analysis dictionary has already started to attract attention [8,9,11].
The authors of [8] suggest to learn Ω one row at a time, exploit-
ing the fact that a considerable set of examples is expected to be
orthogonal to such a row. Their approach relies heavily on a ran-
domized initialization strategy and loses its efficiency rapidly as
the signal dimension d grows. The work reported in [9] poses the
task of learning Ω as a constrained optimization problem. The
approach suggested there puts a rather arbitrary constraint for reg-
ularizing the learning problem – the dictionary is constrained to be
a uniform normalized tight frame – limiting the possible Ω to be
learned. Finally, in [11] analysis dictionary learning is formulated
as a bilevel-programming optimization problem.

In this paper we adopt an approach that is based directly on �0

sparsity. This exact sparsity measure distinguishes our work from
previous ones and allows us the development of an efficient train-
ing algorithm, which is parallel to the synthesis-model K-SVD in
its rationale and computational steps.

2. A CLOSER LOOK AT THE ANALYSIS MODEL

In the synthesis model the representation α is obtained by a com-
plex and non-linear pursuit process that seeks the sparsest solution
to the linear system of equations Dα = x. This representation can
be arbitrarily sparse, ‖α‖0 = k � d and its support (the k non-
zero indices) describes the atoms constructing the signal x, which
in turn define the subspace this signal belongs to.

In contrast, in the analysis model the computation of the rep-
resentation is trivial, obtained by multiplying x by the possibly
redundant analysis dictionary Ω : Rd → R

p. In this model we
put an emphasis on the locations of the zeros in the vector Ωx,
and define the co-sparsity � as the number of these zeros, so that
‖Ωx‖0 = p − �. Similarly, we define the co-support Λ of the
signal x as the set of rows in Ω that are orthogonal to it, namely
ΩΛx = 0, where ΩΛ is a sub-matrix of Ω that contains only the
rows indexed in Λ. The signal x is characterized by its co-support,
since it defines the subspace the signal belongs to.

The analysis model assumes that the analysis representation
vector Ωx should be sparse. How sparse can it be? To answer this
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question, let us first assume that the rows in Ω are in general po-
sition, implying that every subset of d or less rows are necessarily
linearly independent. This is equivalent to the claim that the spark
of ΩT is full [2]. In this case we necessarily have ‖Ωx‖0 ≥ p−d,
since otherwise there would be d or more rows that are orthogonal
to x, implying x = 0.

In general, ΩT may have non-full spark. The immediate impli-
cation in such cases is that � could go beyond d, and yet the signal
would not necessarily be nulled, since the co-support rows would
span a subspace that do not cover the complete Rd. An example of
such a dictionary is the vertical concatenation of cyclic horizontal
and vertical one-sided derivatives, applied on a 2D signal of size√
d × √

d. Such a dictionary, denoted ΩDIF , is of size 2d × d,
thus twice redundant [6, 7].

One can generate an analysis signal, and this is done in the
following way: Choose � rows from Ω at random - this will be the
signal’s co-support. Starting with a random vector u ∼ N(0, I),
project it onto the subspace orthogonal to ΩΛ, x = (I−Ω+

ΛΩΛ)u,
and x is an analysis signal that satisfies our basic assumptions. In
the experiments that follow we shall use such randomly generated
signals, when dealing with a synthetic setup (see Section 5).

3. ANALYSIS SPARSE-CODING

Before we study the problem of learning the analysis dictionary Ω,
we have to consider a simpler task called Analysis Sparse-Coding.
As we shall see in the next section, this is an important building
block in the overall learning procedure. A convenient property
of the analysis approach is that given a signal x, we can readily
compute its analysis coefficients Ωx, and thus determine the car-
dinality of its analysis representation. However, we assume that
the given signal y is contaminated, y = x + v, where v is a zero-
mean white-Gaussian additive noise. We aim at recovering the
clean signal x, and this requires solving a problem of the form

x̂ = Argmin
x

‖x − y‖2 Subject To ‖Ωx‖0 ≤ p− �. (1)
or

x̂ = Argmin
x

‖Ωx‖0 Subject To ‖x − y‖2 ≤ ε. (2)

Here ε is the error tolerance, derived from the noise power. The
above problems can be considered as denoising schemes, as x̂ is
an attempt to estimate the true noiseless signal x. In principle,
denoising is possible with the analysis model because, once the
co-support has been detected, projection onto the complement sub-
space attenuates the additive noise in the co-support subspace, thus
cleaning the signal.

The above-mentioned two problems are equivalent, of course,
given the correct correspondence between � and ε, and the choice
between them depends on the available information regarding the
process that generated y. We refer to these problems as the analy-
sis sparse-coding or the analysis-pursuit. Similar to the synthesis
sparse approximation problem, problems (1) and (2) are combina-
torial in nature and can thus only be approximated in general. For
simplicity, in the following we focus on formulation (1), though
the techniques are equally applicable to (2).

One approach to approximating the solution is to relax the �0

norm and replace it with an �1 penalty function. This approach
is parallel to the basis-pursuit approach for synthesis approxima-
tion [1]. A second approach parallels the synthesis greedy pursuit
algorithms [1], and is the one we shall use in this work. It suggests
selecting rows from Ω one-by-one in a greedy fashion. The so-
lution can be built by either detecting the rows that correspond to
the non-zeros in Ωx, or by detecting the zeros. The first approach

is the one taken by the Greedy-Analysis-Pursuit (GAP) algorithm,
described in [7]. We shall take the alternative approach of finding
the co-support Λ one element at a time. We refer to this algorithm
as the Backward-Greedy (BG) Algorithm, as it is concentrating
on the zeros in the representation. A detailed description of this
algorithm, is given in Algorithm 1.

Algorithm 1 BACKWARD-GREEDY-ALGORITHM

1: Input: Analysis Dictionary Ω ∈ R
p×d, signal y ∈ R

d, and
target co-sparsity �

2: Output: Signal x̂ ∈ R
d satisfying ‖Ωx̂‖0 = p − � and mini-

mizing ‖y − x̂‖2
3: Initialization: Set i = 0, co-support set Λi := ∅, x̂i := y
4: for i = 1 . . . � do
5: k̂i := Argmin

k/∈Λi−1

|wT
k x̂i−1 |

6: Λi := Λi−1 ∪ { k̂i }
7: x̂i :=

[
I −Ω+

Λi
ΩΛi

]
y

8: end for
9: return x̂�

The process begins by setting x̂ = y and initializing the co-
support to be an empty set of rows. In each iteration, the inner
products Ωx̂ are computed for all the rows not indexed in the co-
support, and the row with the smallest inner product is selected
and added to the set. The solution x̂ is then updated by projecting y
on the orthogonal space to the selected rows. This process repeats
until the target sparsity is achieved. Alternatively, this process may
proceed until the error ‖x̂i−y‖2 exceeds a pre-specified threshold.

In practice, the matrix inversion in Step 7 of the above algo-
rithm (updating x̂i) can be avoided and this step can be imple-
mented efficiently by accumulating an orthogonalized set of the

co-support rows. This means that once k̂i has been found and
the row wk̂i

is about to join the co-support, it is first orthogonal-
ized with respect to the already accumulated rows using a Gram-
Schmidt process. Denoting by {qj}i−1

j=1 the orthogonal set accu-

mulated so far (as column vectors), the orthogonalization of wT
k̂i

is obtained by

qi = wT
k̂i

−
i−1∑
j=1

(qT
j wk̂i

)qj . (3)

This is followed by normalization of this vector, qi = qi/‖qi‖2.1

Consequently, Step 7 in the algorithm translates comfortably to

x̂i =

[
I −

i∑
j=1

qjqT
j

]
y = x̂i−1 − qiq

T
i y =

[
I − qiq

T
i

]
x̂i−1.

(4)
The last equality is justified by the fact that a projection of y onto
qi is the same as the projection of x̂i−1. While the two are indeed
the same, we have observed that the latter option exhibits a better
numerical stability.

We can propose the following improvement to Algorithm 1:
At the ith iteration, rather than choosing the index k /∈ Λi−1 that

1When dealing with analysis dictionaries that may have non-full spark,
this normalization should be done with care, as it may happen that qi
emerging from (3) is zero, reflecting the fact that it is spanned by the ex-
isting set. In such a case, the row wk̂i

should be simply omitted as it

contributes nothing to the accumulated basis.
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minimizes |wT
k x̂i−1 |, we can test all of these possible indices,

and per each perform the complete update (steps 6 and 7) in Algo-

rithm 1. Then we choose k̂i that leads to the smallest decrease in
the signal’s energy, namely the one that minimizes ‖x̂i − x̂i−1‖2.
This should remind the reader of the Least-Squares OMP algo-
rithm, as described in [2]. We shall refer hereafter to this algo-
rithm as the Optimized-BG (OBG). Using (4) we get that Step 5
in Algorithm 1 should be replaced in the OBG algorithm by:

k̂i := Argmin
k/∈Λi−1

| (q(k)
i )T x̂i−1 |, (5)

where q(k)
i is the orthogonalized and normalized vector corre-

sponding to wk at the ith iteration. The computational complexity
of the two pursuit algorithms, using their efficient implementations
discussed above, is O(�dp) for BG and is O(�2dp) for OBG.

4. THE ANALYSIS K-SVD ALGORITHM

We now turn to describe the main part of this work – learning the
analysis dictionary. We consider the following setting: Given a
training set Y = [ y1 y2 . . . yR ] ∈ R

d×R, we assume that every
example is a noisy version of a signal orthogonal to � rows from
the dictionary Ω. Thus, yi = xi + vi, where vi is an additive zero
mean and white Gaussian noise vector, and xi satisfies ‖Ωxi‖0 =
p−�. For simplicity we shall assume that all these signals have the
same co-sparsity �, although the treatment we give below can cope
with more general scenarios. Our goal is to find the dictionary
Ω giving rise to these signals. Taking into account the noise in
the measured signals, we formulate an optimization task for the
learning process – it is given by{

Ω̂, X̂
}
= Argmin

Ω, X
‖X − Y‖2F

Subject To ‖Ωxi‖0 ≤ p− �, ∀1 ≤ i ≤ R (6)

‖wj‖2 = 1, ∀1 ≤ j ≤ p.

Here, xi are our estimates of the noiseless signals, arranged as
the columns of the matrix X. The vectors wj denote the rows
of Ω (held as column vectors). The normalization constraint on
the rows of Ω is introduced to avoid degeneracy, but otherwise
has no practical influence on the result. We note the similarity of
this problem to the �0 synthesis training problem [3]. Indeed, the
training problem posed in equation (6) is highly non-convex, and
as such we clearly cannot hope to find its global solution in gen-
eral. Instead, we adopt a simple iterative approximation method,
described next, which draws its spirit from earlier work on algo-
rithms for synthesis dictionary learning.

Assuming an initial estimate Ω0 of the analysis operator, the
optimization scheme is based on a two-phase block-coordinate-
relaxation approach. In the first phase we optimize for X while
keeping Ω fixed, and in the second phase we update Ω using the

computed signals X̂. The process repeats until some stopping cri-
terion (typically a fixed number of iterations) is achieved.

Given the current estimate of the analysis dictionary Ω, op-
timizing for X can be done individually for each column of X,
defining an ordinary �0 analysis pursuit problem for each signal
yi, similar to (1). More specifically, the "sparse-coding" stage in
the iterative scheme consists of finding for each signal the � rows

in Ω that are most orthogonal to it. Once X̂ is computed, we turn
to update Ω in the second step. The optimization is carried out
sequentially for each of the rows wj in Ω. We suggest exploiting
the fact that a considerable set of examples is expected to be nearly
orthogonal to wj , so that this row can be updated as the one that is

most orthogonal to all the signals that were found to be orthogonal

to it in the "sparse-coding" stage. Denoting the set of columns in X̂
that were found to be orthogonal to wj by J and letting YJ be the
sub-matrix of Y containing the columns indexed in J , the update
step for wj can be written as

ŵj = Argmin
wj

‖wT
j YJ‖22 Subject To ‖wj‖2 = 1, (7)

which is a simple SVD problem: the eigenvector that corresponds
to the smallest eigenvalue of these examples’ autocorrelation ma-
trix is the desired row. Note that this is the same atom update rule
as in [8]. The proposed algorithm thus iterates between the com-
putation of this row from the subset of chosen examples, and an
update of this subset using greedy analysis pursuit that is based on
an exact �0 sparsity measure.

One advantage of this specific approximation method is that
it disjoints the updates of the rows in Ω, enabling all rows to be
updated in parallel. Another desirable property of the resulting al-
gorithm is that it has a similar structure to the synthesis K-SVD
algorithm – replacing the maximum eigenvalue computation with
a minimum eigenvalue one. We term the resulting algorithm Anal-
ysis K-SVD due to this resemblance. The full algorithm is detailed
in Algorithm 2.

Algorithm 2 ANALYSIS K-SVD

1: Input: Training signals Y ∈ R
d×R, initial dictionary Ω0 ∈

R
p×d, target sparsity �, number of iterations k

2: Output: Dictionary Ω and signal set X̂ minimizing (6)

3: Initialization: Set Ω := Ω0

4: for n = 1 . . . k do
5: x̂i := Argmin

x
‖yi − x‖22 Subject To ‖Ωx‖0 ≤ p− �, ∀i

6: for j = 1 . . . p do
7: J := {indices of the columns of X̂ orthogonal to wj}
8: ŵj := Argmin

w
‖wT YJ‖2 Subject To ‖w‖2 = 1

9: Ω{j-th row} := wT
j

10: end for
11: end for

We can suggest the following improvement to Algorithm 2, in-
tended to surpass deadlock situations where the iterative process
becomes stuck at local minimum: In each iteration we check for
each row in Ω how many signals were found to be orthogonal to
it and how much this row has changed in the update stage. A row
that remains almost unchanged and is orthogonal to relatively few
signals is regarded as a false one and is therefore replaced by an-
other row which is generated in a random fashion. One possible
generation process for these rows is described in Section 5, when
relating to the initial dictionary.

5. SIMULATION RESULTS

We now present a set of experimental results with the proposed
training algorithm. We start with a synthetic setup, where the
analysis dictionary is known and a set of signal examples with a
known co-sparsity are generated as described in Section 2. These
sparse analysis signals are normalized to unit length and are op-
tionally subjected to additive white Gaussian noise, producing the
final training set. We performed experiments for a dictionary Ω ∈
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Fig. 1. Synthetic experiment results of the Analysis K-SVD algo-
rithm for a random dictionary Ω ∈ R

50×25 and a training set of
R = 50, 000 analysis signals with co-sparsity � = 21.

R
50×25 that is generated with random Gaussian entries (note that

the rows of this dictionary are in a general position), and a train-
ing set of R = 50, 000 examples with co-sparsity � = 21. We
tested both the noise-free setup and a noisy setup with noise level
σ = 0.2/

√
d = 0.04, which corresponds to a signal-to-noise ratio

of 25.
Each row in the initial dictionary is constructed by randomly

selecting a set of d − 1 examples and computing the vector that
spans their one-dimensional null-space. We apply 200 iterations
of the Analysis K-SVD algorithm using the OBG algorithm with
a target co-sparsity � = 21 for the "sparse-coding" stage and the
improvement mentioned in the end of Section 4. A row wj in the
true dictionary Ω is regarded as recovered if

Min
i
(1− |ŵT

i wj |) < 0.01, (8)

where ŵi are the atoms of the trained dictionary. A similar success
criterion was used for the synthesis K-SVD [3].

Example results are shown in Figure 1, demonstrating the abil-
ity of the proposed approach to obtain a good recovery of the true
underlying operator Ω given a sparse analysis training set, and its
robustness to noise: 96% of the rows in the true Ω were recovered
in the noise-free setup and 92% in the noisy setup. Note that at
the end of the training for the noisy setup, the error per element

‖X̂ − Y‖F /
√
Rd goes below the noise level σ, indicating a suc-

cessful training.
Next, we train an analysis dictionary using R = 10, 000

patches of size 6 × 6 extracted from a piece-wise constant im-
age contaminated by additive white Gaussian noise with σ = 5
(several patch examples are shown in Fig. 2 on the left). We
apply 50 iterations of the Analysis K-SVD algorithm with a target
co-sparsity � = 32. The BG algorithm is used in the 30 first
iterations and the OBG is used in the remaining iterations. We can
observe from the results shown in Fig. 2 that the trained analysis
dictionary exhibits a high resemblance to the ΩDIF dictionary
mentioned in Section 2. This observation aligns with our intuition
that many finite differences computed on a piece-wise constant
signal (in our case - a 2D patch) are expected to be near zero.

6. CONCLUSIONS

In this work we present an efficient algorithm for learning an anal-
ysis dictionary, which is parallel to the synthesis K-SVD in its
rationale and structure. We have demonstrated the effectiveness of
this algorithm in several experiments, showing a succesful recov-
ery of the true analysis dictionary in a synthetic setup and observ-
ing the emergence of meaningful structures in the trained dictio-
nary for a setup where there is no "true" reference dictionary. In

(a) Patch examples (b) Ω̂ (c) ΩDIF

Fig. 2. Traning results for R = 10, 000 patches of size 6 × 6
extratced from a noisy piece-wise constant image (σ = 5).

this work we do not address specific applications for the analysis
model and its dictionary learning, as our main goal is to intro-
duce the core approach for obtaining the analysis dictionary from
a given data-set of examples. It remains to be seen which applica-
tions would benefit the most from this model.
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