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ABSTRACT

Analysis based reconstruction has recently been introduced

as an alternative to the well-known synthesis sparsity model

used in a variety of signal processing areas. In this paper

we convert the analysis exact-sparse reconstruction problem

to an equivalent synthesis recovery problem with a set of

additional constraints. We are therefore able to use existing

synthesis-based algorithms for analysis-based exact-sparse

recovery. We call this the Analysis-By-Synthesis (ABS) ap-

proach. We evaluate our proposed approach by comparing it

against the recent Greedy Analysis Pursuit (GAP) analysis-

based recovery algorithm. The results show that our approach

is a viable option for analysis-based reconstruction, while at

the same time allowing many algorithms that have been de-

veloped for synthesis reconstruction to be directly applied for

analysis reconstruction as well.

Index Terms— Analysis sparsity, synthesis sparsity,

sparse reconstruction, analysis by synthesis

1. INTRODUCTION

In recent years, sparse representation of signals has been an

active research domain in signal processing. Until recently

the usual sparsity model considered was a generative model,

known as synthesis sparsity: a signal x ∈ R
d is sparse if it

can be expressed as a weighted sum of a few signals (called

atoms) from a known dictionary D ∈ R
d×N

x = DγS , with ‖γS‖0 = k (1)

where ‖·‖0 represents the �0 pseudo-norm, defined as the

number of non-zero coefficients of a vector. The decomposi-

tion vector γS is thus required to have k non-zero elements.

Lately, a different sparsity model known as analysis spar-
sity has been proposed [1], asserting that the signal x produces
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a sparse output

γA = Ωx, with ‖γA‖0 = N − l (2)

when analyzed with an operator Ω ∈ RN×d, where l is the

number of zero coefficients of γA (see Section 2 for more

details).

Both of these models can be successfully used as regu-

larizing terms for ill-posed inverse problems. In this paper

we focus on reconstructing a signal x that is observed only

through a set of m < d linear measurements, arranged as the

rows of an acquisition matrix M ∈ R
m×d, possibly affected

by noise e
y = Mx+ e. (3)

This is known as the compressed sensing problem, which has

been extensively studied [2, 3] and used in practice in various

applications (e.g. [4, 5]). It is now well known [2] that a suf-

ficiently sparse signal x can be efficiently recovered from the

measurements y by solving the synthesis-based optimization

problem

x̂ = D argmin
γS

‖γS‖0 with ‖y −MDγS‖22 < ε (4)

where ε is the estimated noise energy of the measurements.

Interestingly, it has also been shown [6] that a sufficiently

sparse γA in (2) also allows accurate recovery of the signal

x by solving

x̂ = argmin
x

‖Ωx‖0 with ‖y −Mx‖22 < ε. (5)

Problem (4) is NP-complete [7], and we hypothesize that (5)

may be similarly difficult. However, under stricter conditions,

the �0 norm in both equations can be replaced with the �1
norm, leading to convex optimization problems that are much

easier to solve [8].

In this paper we pursue an approach to solving the

analysis-based reconstruction problem (5) by rewriting it

as an equivalent synthesis reconstruction problem. The paper

is structured as follows. Section 2 contains a closer look at

the analysis model and its details. In Section 3 we propose the

Analysis-By-Synthesis (ABS) scheme for exact-sparse analy-

sis recovery. In Section 4 we compare our approach with the
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results obtained with the Greedy Analysis Pursuit algorithm

[9] designed to solve (5) directly. Section 5 contains further

considerations regarding our scheme. Finally, concluding

remarks and future work are presented in Section 6.

2. THE ANALYSIS MODEL

As shown in (1) and (2), the synthesis sparsity model requires

that a signal is composed out of only k atoms (columns) of the

dictionary D, whereas the analysis model requires the signal

to be orthogonal to a large number l of the rows of the op-

erator Ω. We refer to k as the sparsity of the signal x in the

dictionary D, and, following [6], to l as the cosparsity of x
with respect to the operator Ω.

For N ≤ d the analysis and synthesis reconstruction prob-

lems are shown in [1] to be equivalent, with D and Ω being

pseudo-inverses to each other, D = Ω†. However, in general

for N > d (i.e. Ω is a “tall” matrix) the equivalence no longer

holds, with (4) and (5) leading to different solutions.

The similarity of the two models emerges from the fact

that both are instances of the Union-of-Subspaces (UoS)

model [6]. The set of all k-sparse signals in a dictionary D
comprises the union of all the

(
N
k

)
k-dimensional subspaces

spanned by any subset of k atoms from the N atoms of D.

The set of all l-cosparse signals of an operator Ω is the union

of all the
(
N
l

)
(d − l)-dimensional subspaces that are the

orthogonal complements of the subspaces spanned by any l
rows. We may say, therefore, that the synthesis model is es-

sentially described by the subspaces where the signal may lie,

i.e. the non-zero coefficients of the decomposition, whereas

the analysis model describes the subspaces where the signal

cannot lie, i.e. the rows that are orthogonal to the signal [6].

3. ANALYSIS-BY-SYNTHESIS (ABS) APPROACH
FOR EXACT RECOVERY

3.1. Augmented equivalence theorem

Let us consider the case of reconstruction with exact con-

straints, i.e. ε = 0 in (5). The following theorem establishes

the equivalence between the analysis recovery problem and a

synthesis recovery problem with a set of extra constraints.

Theorem 3.1. The solution of the analysis recovery problem
with exact constraints and full-rank operator Ω

x̂ = argmin
x

‖Ωx‖0 with y = Mx (6)

is identical to the solution of the augmented synthesis recov-
ery problem

x̂ = D argmin
γ

‖γ‖0 with ỹ = Ãγ (7)

where D = Ω†, ỹ =

[
y
0

]
, Ã =

[
MD
PD

]
with PD being

any projector on the nullspace of D.

Proof. We show the equivalence of (6) with (7), starting from

the approach in [1]. Making the notation Ωx = γ, it follows

from Ω†Ω = Id that x = Ω†γ. We proceed to substitute

the unknown variable x in (6) introducing γ instead, but in

doing that we must keep in mind that γ is allowed to live only

in the column span of Ω, which we can express as the extra

constraint γ = ΩΩ†γ. Therefore we arrive to

x̂ = Ω† arg min
γ:γ=ΩΩ†γ

‖γ‖0 with y = MΩ†γ. (8)

We rewrite the constraint γ = ΩΩ†γ as 0 = (IN − ΩΩ†)γ.

We can join this with the constraint y = MΩ†γ and construct

a single augmented constraint system

[
y
0

]
︸ ︷︷ ︸

ỹ

=

[
MΩ†

IN − ΩΩ†

]
︸ ︷︷ ︸

Ã

γ. (9)

Let us define D = Ω†. The lower constraint 0 = (IN −
ΩΩ†)γ is equivalent to γ living in the column space of Ω,

i.e. being orthogonal to the nullspace of D = Ω† (denoted as

nD); therefore this constraint can be expressed as 0 = PDγ
with PD being any projector on nD. Replacing Ω† with D
and rewriting (8) with the augmented constraint (9) yields

x̂ = D argmin
γ

‖γ‖0 with

[
y
0

]
=

[
MD
PD

]
γ (10)

which is what we wanted to prove.

Theorem 3.1 reveals that analysis recovery is a particu-

lar instance of synthesis recovery; indeed, without the lower

constraint (10) would be identical to synthesis-based recov-

ery. What is specific of the analysis recovery is, therefore, the

restriction of the solution search space to the column space of

Ω (or, equivalently, to the row space of D = Ω†). A similar

condition is used in [10] in the context of local optimality of

analysis operator learning. In practice, this constraint can be

expressed by finding a set of (N − d) linearly independent

vectors from nD (e.g. by finding a SVD decomposition of

D) and then imposing that γ is orthogonal to all of the vec-

tors in this set. Moreover, if D is a tight frame allowing fast

multiplications via fast transform algorithms, the row vectors

of PD can be selected as the “missing” orthogonal rows, thus

allowing possible fast solver implementations.

As a consequence of Theorem 3.1, one can use synthesis-

based solvers to find the solution for analysis-based recovery.

While the more general character of synthesis over analysis

recovery, as well as the subspace restrictions implied by the

latter, is already known [1, 6], to our knowledge this is the

first time that the equivalence of analysis exact reconstruction

with an augmented synthesis problem has been stated explic-

itly and also used as a method for analysis recovery.

One observes that whenever N ≤ d, ΩΩ† = IN and

thus the lower subspace constraint in (9) vanishes, straight-

forwardly confirming the equivalence of analysis-based and

synthesis-based recovery already shown in [1] for this case.
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Algorithm 1 Proposed Analysis-By-Synthesis (ABS) ap-

proach for exact reconstruction

Input: Analysis operator Ω, measurements vector y, mea-

surement matrix M
Output: Recovered signal

x̂ = argmin
x

‖Ωx‖0 with y = Mx

1: Define D = Ω† and compute a basis for the null space of

D using the SV D decomposition, arranging the vectors

as the rows of a (N − d)×N matrix denoted as PD

2: Create augmented constraint matrix Ã and measurement

vector ỹ

Ã =

[
MD
PD

]
ỹ =

[
y
0

]

3: Solve

x̂ = D argmin
γ

‖γ‖0 with ỹ = Ãγ

using a synthesis-based solver.

3.2. Proposed approach

Our proposed approach for analysis recovery with exact con-

straints (ε ≈ 0) is summarized in Algorithm 1, which we de-

note as Analysis-By-Synthesis (ABS). It consists of building

the augmented constraint matrix Ã and measurement vector ỹ
and then solving with a synthesis-based algorithm.

4. EXPERIMENTAL RESULTS

4.1. Setup

A significant advantage of our approach is the ability to use

existing �0 or �1 solvers designed for the synthesis reconstruc-

tion problem, in the third step of Algorithm 1. We run four

different synthesis-based solvers in the proposed ABS ap-

proach: Orthogonal Matching Pursuit (OMP) [11] with stop-

ping criterion being a fixed number k of selected atoms (de-

noted as OMP-k), OMP with stopping criterion being residual

error below 10−9 (OMP-ε), Two Stage Thresholding (TST)

[12] (a generalization of CoSaMP and subspace pursuit) and

Basis Pursuit (BP) [3] for �1 minimization from [13]. For ref-

erence we compare with the results obtained with the Greedy

Analysis Pursuit (GAP) [9] algorithm, which is specifically

designed for solving the analysis recovery problem directly.

We investigate the phase transition border [9] of the above

mentioned algorithms for perfect recovery, for the case of ex-

act reconstruction. The dimension of the signals is fixed to

200. The analysis operator is created as the transposition of

a random tight frame, having N = 240 rows. We define the

parameters δ = m
d and ρ = d−l

m that define the compression

ratio and the relative cosparsity. For every pair (δ, ρ) we gen-

erate 100 signals xi such that ‖Ωxi‖0 = N− l and we project

them using a random measurement matrix M of size m × d,

with zero-mean unit-norm normal i.i.d. random elements. We

then attempt reconstruction with the above mentioned algo-

rithms. For OMP-k we stop after k = N − l atoms have been

selected. We consider a signal as perfectly recovered if the

reconstruction error is below 10−6.

4.2. Results

Fig.1 displays the percentage of perfectly recovered signals,

with white indicating 100% recoverability and black 0%. The

notation ABS indicates that the synthesis solvers are used

within our proposed approach.

The results show that our approach is a viable solution

to analysis-based recovery. However, we find that not all syn-

thesis solvers are adequate for use with our approach: OMP-k
performs poorly, suggesting that this should not be considered

as an option for recovery. OMP-ε, TST and BP provide good

results, with OMP-ε and BP outperforming GAP in some ar-

eas (lower cosparsity but sufficient measurements, i.e. larger

δ and larger ρ), but being outperformed in others (fewer mea-

surements and higher cosparsity, i.e. smaller δ and ρ).

For completeness, we also present the total running times

of the algorithms in Table 1. The overall experiment con-

sisted in recovering a total of 36100 signals ( 19 × 19 pairs

(δ, ρ)×100 signals for each) on a 2.83GHz Intel Core 2 Quad

Q9550 machine running MATLAB 7.7.0. We find that for our

experiments OMP recovery is the fastest whereas BP is the

slowest, with TST and GAP yielding intermediate times.

5. DISCUSSION AND FURTHER CONSIDERATIONS

As we have seen, the proposed approach is based on rewrit-

ing analysis recovery as a particular case of the more general

synthesis recovery problem, subsequently applying a general

synthesis-based solver. Therefore the solver may not fully

exploit the particularities of the analysis problem, reflected

in the particular structure of the augmented constraint matrix

Ã (i.e. the bottom rows are orthogonal to the upper rows).

This makes it possible for the results not to be as good as

with a solver designed exclusively for analysis-based recon-

struction. For the purpose of this paper, however, we settle

with the possible slight suboptimality of the synthesis solvers,

counterbalanced by the increased flexibility conferred by the

large number of available solvers.

For reconstruction with approximate constraints, i.e. ε ≥
0 in (5), an extra precaution is required when handling the

augmented constraint matrix in (9). We still require that the

solution γ satisfies the lower subspace constraint as precisely

as possible, but we allow a certain degree of approximation

error for the upper part. This prevents a direct application of

Theorem 3.1. We are currently working on establishing a sim-

ilar equivalence relation for the case of approximate recovery.
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(e) GAP

Fig. 1. Percentage of perfectly reconstructed signals for analysis-based recovery with different algorithms: our proposed ABS

approach with four different solvers ( (a), (b), (c) and (d) ) and the GAP algorithm [9] (e). White indicates 100% recoverability

and black 0%.

Table 1. Total running times (×103 seconds)

ABS:

OMP-k OMP-ε TST BP GAP

7.691 8.004 22.829 51.152 13.065

6. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a new approach to analysis-

based exact signal recovery, by reformulating it as a particular

synthesis-based problem. We prove that, for reconstruction

with exact constraints, analysis recovery is equivalent to syn-

thesis recovery with an augmented constraint matrix. This

means that we can use synthesis-based algorithms for analy-

sis recovery. Experimental results show that our approach is

a viable alternative for analysis-based reconstruction.

For future work, it will be interesting to investigate which

algorithms are suitable for this approach and the reason why

some, such as OMP-k, are performing poorly, while others

provide good results. We also aim to extend the equivalence

for approximate recovery.
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