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ABSTRACT

Realistic reconstruction and manipulation of strong vocal expres-
sions found in singing voices is a challenging and exciting topic. A
speech analysis, modification and resynthesis framework based on
interference-free power spectral and instantaneous frequency repre-
sentations for periodic sounds is extended for handling such voices.
Strong expressions are typically characterized by rapid variations in
excitation timing and strength as well as complex structured exci-
tation. Three types of excitation source extractors are revised and
introduced to handle them. Preliminary tests successfully replicated
strong vocal expressions. Also, additional attribute representations
for modifying excitation and spectral information based on audio
texture features are briefly discussed.

Index Terms— speech analysis, speech synthesis, Human
voice, Vocoders, periodic structures

1. INTRODUCTION

Singing voice is a unique musical instrument not only because it can
convey lyrics and melody at the same time, but also because voice
itself is extremely expressive and is coupled with basic instinct and
biological status. Singers exploit full range of these advantages in
their performance. Their exploitation sometimes results into unique
strong vocal expressions associated with irregularities and complex
excitation structures.

This article introduces a set of textural representations for char-
acterizing these expressive attributes and proposes a framework for
flexible manipulation of expressive attributes. The proposed frame-
work is implemented as an extension to TANDEM-STRAIGHT [1],
a speech analysis, modification and resynthesis system.

The following sections start from brief introductions to concept
and implementation of TANDEM-STRAIGHT and temporally vari-
able multi-aspect morphing [2]. Then, discussions on the extension
for strong vocal expressions are presented with numerical examples.

2. BACKGROUND: TANDEM-STRAIGHT

In TANDEM-STRAIGHT and its predecessor STRAIGHT (legacy-
STRAIGHT [3]), quasi periodic excitation of voiced sounds is
understood as a mechanism for sampling underlying smooth time-
frequency representations which cannot be observed directly. This
repetitive excitation is effective for making voices stand out loud and
salient in pitch. However, this repetitive excitation is troublesome
for usual short term Fourier analysis (STFT), because it introduces
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periodic variations both in the time and the frequency domains.
TANDEM-STRAIGHT removes these variations in two steps: tem-
porally stable power spectrum representation and spectral envelope
recovery based on a new sampling theory.

2.1. Temporally stable power spectrum

Averaging power spectra calculated at two temporal locations which
are one half-pitch period apart eliminates temporal variations due
to periodicity [4, 1]. This procedure is applicable to wide range of
windowing functions with reasonably low side-lobe levels and with
an equivalent pass band spanning up to two harmonic components.
In the current implementation of TANDEM-STRAIGHT, a Black-
man window having an F0-adaptive window length of 2.5T0 is used,
where T0 represents the fundamental period. Detailed discussions of
windowing functions for this procedure are given in the literature [5].

2.2. Spectral envelope recovery

Periodic excitation in the time domain is periodic sampling in the
frequency domain. This interpretation and consistent sampling the-
ory [6] provide a procedure to recover spectral envelope which does
not have periodic variations due to frequency sampling and preserves
power spectral levels at harmonic frequencies [1]. Consistent sam-
pling theory is crucially important in spectral envelope recovery, be-
cause vocal tract transfer functions are not band-limited.

Recently, a new implementation of this procedure based on log-
arithmic conversion of spectral information was introduced to im-
prove recovery accuracy and perceptual sound quality [5, 7]. In this
implementation, spectral envelope PST (ω) is calculated from the
temporally stable power spectrum PT (ω) using the following equa-
tion:

PST (ω) = exp (F [g1(q)g2(q)CT (q)]) , (1)

where CT (q) represents cepstrum of PT (ω) and q represents que-
frency. Symbol F [ ] represents Fourier transform. Two lifters g1(q)
and g2(q) are defined below:

g1(q) = α̃0 + 2α̃1 cos (2πqf0) , (2)

g2(q) =
sin(πf0q)

πf0q
, (3)

where f0 = 1/T0 represents fundamental frequency (F0). The
second lifter g2(q) represents F0-adaptive spectral smoothing us-
ing rectangular smoothing function (width is set to f0). The first
lifter g1(q) represents a digital filter on the frequency axis for com-
pensating over-smoothing due to g2(q) and time windowing used to
calculate PT (ω). Detailed discussion on this cepstrum-based imple-
mentation is given in the literature [5].
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The filter coefficients α̃0, α̃1 of g1(q) are numerically deter-
mined to minimize the Itakura-Saito spectral distance on the per-
ceptual frequency axis (ERBN number [8]) for various types of
vocal tract shapes [9] and excitation source variations using LF-
model [10]. Subjective tests revealed that this new implementation
using the optimized coefficients α̃0 = 1.18, α̃1 = −0.09 provides
better manipulated speech sounds [7] than legacy-STRAIGHT and
the first implementation of TANDEM-STRAIGHT [1] as well as
PSOLA[11]. Since the final form of this implementation is Cep-
strum liftering, it is interesting to investigate on relations with latest
True-Envelope based approach [12].

2.3. Excitation source representations

To resynthesize speech sounds, the extracted (underlying smooth)
time-frequency representation has to be excited using source related
information. This is the weakest part of STRAIGHT and extensions
for strong expressions are mainly dealing with this representation.

STRAIGHT intentionally discards the original waveform infor-
mation (in other words phase information) in the analysis stage. This
is because one of the important goal in designing STRAIGHT is to
use perceptually relevant information only. Waveform preservation
is not necessary for perceptually identical speech reproduction, be-
cause two independent segments of Gaussian white noise having the
same variance are perceptually indistinguishable.

This phase negligence and temporally stable power spectral rep-
resentations eliminate need of “pitch marking,” which is prerequisite
for conventional pitch synchronous methods and is fragile. In other
words, TANDEM-STRAIGHT is a “pitch-marking-free pitch syn-
chronous method.” Local phase characteristics of the resynthesized
speech are artificially regenerated by calculating the minimum-phase
impulse response [13] from the square-root of each STRAIGHT-
spectrum slice.

Current implementation of TANDEM-STRAIGHT extracts two
types of excitation source information, fundamental frequency (F0)
and aperiodicity information. The F0 information tightly correlates
with a very important and dominant perceptual attribute “pitch.” The
aperiodicity information correlates with a delicate timbre-related at-
tribute called “voice quality.” Current implementation of this ape-
riodicity information is based on the power ratio of periodic com-
ponent and random component in each frequency band (one octave
wide). This information is summarized using a sigmoidal approxi-
mation with two parameters: boundary frequency and slope of tran-
sition [14].

2.4. Temporally variable multi-aspect morphing

Morphing based on STRAIGHT introduced a powerful means for
manipulating singing voices, although it was originally designed
to promote exploratory research of speech perception and produc-
tion [15]. Reformulation of morphing algorithms based on inter-
polation/extrapolation of logarithmic transformation of derivatives
of parameter mapping functions and exponential inversion enabled
temporally variable multi-aspect morphing and made it more flexible
and robust [2].

However, current excitation source representations are not rich
enough to replicate realistic impressions of strong vocal expressions
in singing voices. This makes this flexible morphing framework less
effective for singing applications, and motivates the extension intro-
duced in the following sections.
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Fig. 1. Extracted period candidates for an example of strong vo-
cal expressions. Salience indices are represented as size of the data
dots. Plot shows an excerpted vowel part /a/ of a test performance
by a male player of the Japanese traditional theatrical art “kyougen”
reported in reference [20].

3. EXTENSION OF SOURCE REPRESENTATIONS

Rapid variation in timing and strength of excitation events is a typical
characteristic of strong expressive voices. Such variation sometimes
shows sub-harmonic (diplophonic) behavior. Three algorithms are
prepared for analyzing such behavior: excitation structure extractor
(XSX) [16], interval analysis of fundamental component [17] and a
temporally stable instantaneous frequency representation [18]. The
last two extensions are original in this article. Note that the follow-
ing procedures assume high-quality recording (high SNR and wide
frequency range), since post-processing of recorded singing voice is
a primary target application.

3.1. XSX, multiple specialized periodicity detectors

An exhaustive periodicity detector, XSX, which detects all possible
periodic candidates with periodicity salience indices, is designed by
the following procedures. XSX was found to detect diplophonia and
other complex excitation structures in Noh (Japanese traditional the-
atrical performance) singing voice [19] and pathological voices [16].

Dividing PT (ω), a power spectrum of periodic signals, by
PST (ω), its spectral envelope, leaves periodicity information and
bias term. By removing bias and weighting to select base-band
harmonic components, Fourier transform of the periodic informa-
tion yields a salient peak at fundamental period, T0. This yields a
periodicity detector tuned to T0 = 1/f0.

Since no prior information about F0 is available, periodicity de-
tectors spanning possible F0 range are allocated equidistantly on the
logarithmic time (interval) axis, for example three detectors for each
octave. Output of each detector is shaped so that the integrated de-
tector output yields a constant value as a salience index [5].

Figure 1 shows an example of XSX analysis of strong vocal ex-
pressions by a male player of the Japanese traditional theatrical art
“kyougen” reported in reference [20]. In this example, three types
of periodic structures are visible: fundamental frequency (around
200 Hz), vibrato (about 5 Hz) and frequency and amplitude modu-
lation (around 100 Hz, 70 Hz and 55 Hz) of the fundamental period
and strength.

3.2. Interval analysis of fundamental component

Zero frequency filtering [21] is a simple and very fast algorithm for
extracting prominent excitation events in voiced sounds. It essen-
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Fig. 2. (Left plot) Smoothed waveform and reference base lines
for interval thresholding. (Green line) 50% level, (Mazenta lines)
25% and 75% levels. Peaks and dips are marked using small circles.
(Right plot) Schematic illustration of selected intervals.

tially detects zero-crossing points of the fundamental component.
Measuring intervals of multiple slice levels of the fundamental com-
ponent provides means to evaluate the fundamental period and its
salience of periodicity at the same time, with finer temporal resolu-
tion than other instantaneous frequency-based methods [17].

This method is extended to make it compatible with XSX by
re-engineering its design. Fundamental component extraction and
multi-level waveform thresholding require the windowing function
to have high attenuation of sidelobe levels and asymptotic sidelobe
decay rate steeper than -12 dB/oct. Usual windowing functions [22]
do not meet these requirements. One practical selection is to use
one of the reported Nuttall windows [23] with four cosine terms
and sidelobe decay rate of -18 dB/oct. (Note that the selected win-
dow is not the commonly known “Nuttall window.” Coefficients for
zeroth through third cosine are 0.355768, 0.487396, 0.144232 and
0.012604, respectively. Refer to item 12 of Table II in [23].)

Figure 2 illustrates an example of multi-level thresholding (this
time, five levels). By representing the threshold type by a variable K,
where K ∈ {(top), (75%), (50%), (25%), (btm)}, the fundamental
frequency is defined as an average of fundamental frequencies of
all types of thresholding. Let M represent the set of thresholding
types. Then, fundamental frequency f0(t), is calculated using the
following equation:

f0(t) =
1

n(M)

X
K∈M

fK(t), (4)

where fK(t) represents the interpolated fundamental frequency by
the type-K thresholding. Also, n(M) represents the cardinal num-
ber of a set M and fK(t) is calculated using the following equation.

fK(t) = fK
kK

+
t − lKk

lKkK+1 − lKkK

(fK
kK+1 − fK

kK
), (5)

where lKk = (tK
k + tK

k+1)/2 represents the nominal location of the

calculated fundamental frequency fK
k = 1/(tK

k+1 − tK
k ) for type-

K thresholding. tK
k represents the type-K thresholding temporal

location of the k-th positive-slope segment of the filtered waveform.
An F0 independent measure of periodicity salience is defined

using standard deviation of logarithmic fundamental frequencies of
different thresholding.

L = exp

 
−
 

122

n(M)

X
K∈M

(log2(f
K(t))−log2(f0(t)))

2

!
1
4

!
, (6)

where a constant “12” is used with musical applications in mind.
Simulation tests using periodic signal plus white Gaussian noise with
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Fig. 3. Modulation transfer function to F0 frequency modulation.
(Left plot) XSX. (Right plot) Thick line represents the proposed
method, dashed line represents YIN and thin line represents SWIPE′

different SNR illustrated that the salience index is a good indicator
of effective SNR, which cannot be directly observable.

Similar to XSX, no prior information about F0 is available for
designing the necessary windowing function for suppressing har-
monic components other than the fundamental one. In the current
implementation, six windowing functions are prepared for each oc-
tave, assigning effective cut-off frequencies equidistantly on the log-
frequency axis, and designed to cover 32 Hz to 1,000 Hz F0 range.
Periodicity index L of each filter output is used to locate the best
cut-off frequency. Using down-sampling and FFT-based fast con-
volution, this procedure runs three-times faster than real-time. (Ev-
erything is written in Matlab m-code, MacBook Pro, with 2.8 GHz
Intel Core i7.) This speed makes it possible to use this procedure
for screening out normal excitation segments before applying XSX,
since XSX is computationally heavy (runs about ten-times slower
than real-time on the same machine).

Figure 3 shows response of XSX and an interval-based method
for synthetic signal with frequency-modulated F0. The center F0
is set to 200 Hz and modulation frequency spanned from 4 Hz to
64 Hz. The modulation depth was 100 cent (5.9463% of F0) peak-to-
peak. Note that both methods can track 60 Hz modulation frequency
and they outperform existing F0 extractors, such as YIN [24] and
SWIPE′ [25]. (Default parameter setting of each method was used
for executing YIN and SWIPE′.)

3.3. Temporally stable instantaneous frequency

Power weighted average of instantaneous frequencies is known to re-
duce annoying spiky behavior between harmonic frequencies. Sub-
stituting stable power spectral representation mentioned before [4, 1]
in this averaging process using Flanagan’s equation [26] enabled us
to suppress this behavior completely [18]. The procedure was in-
troduced for cases where two harmonic components are involved.
The proposed procedure is generalized to more than two interfer-
ing harmonic components for improving temporal resolution and for
reducing background noise effects.

For example, power weighted average of instantaneous frequen-
cies using four temporal locations separated by T0/4 yields tempo-
rally stable power spectrum for periodic signals, even when the win-
dowing function has wider frequency domain representation, which
covers up to three harmonic components. Substituting Flanagan’s
equation for instantaneous frequency, averaged instantaneous fre-
quency is simplified to the following form.

ω̄i(t) =

3X
k=0

„
�[X(tk)]�

»
dX(tk)

dt

–
−�[X(tk)]�

»
dX(tk)

dt

–«
P3

k=0 |X(tk)|2 , (7)
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where tk = t + T0(k − 3/2)/4 represents analysis locations and
X(t) represents filtered signal using quadrature signal for the filter
impulse response. The windowing function introduced in the previ-
ous section is used to design the envelope of the quadrature signal.
Values in discrete STFT bins are interpreted as filter outputs having
nominal frequencies ω as filter center frequencies. Mapping from ω
to ωi in STFT is used to refine the initial estimate of fundamental
frequencies obtained by the procedures mentioned in previous sec-
tions.

4. PRELIMINARY TEST AND DISCUSSION

These procedures were used to analyze several examples excerpted
from a comprehensive singing voice recording [20] of mainly tra-
ditional Japanese singing stored on 18 audio CDs. Analysis and
synthesis tests indicated that the extended source representations are
capable of replicating a wide range of singing expressions.

Morphed sound quality deteriorates when these rapid parameter
variations are directly mixed. Parametric representation such as au-
dio texture [27] is relevant for introducing strong expression manip-
ulation for the extended morphing framework. Manipulated singing
examples can be found in our demonstration site [28].

5. CONCLUSION

Extension of excitation source representations are introduced to a
speech analysis, modification and resynthesis framework, TANDEM-
STRAIGHT. Fine temporal resolution of the proposed methods were
found capable of extracting rapid F0 variations, which is typically
found in expressive singing voice. Integration of these extensions
to the exploratory environment based on the extended morphing
algorithm is underway.
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