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ABSTRACT

A statistical parametric approach to singing voice synthesis
based on hidden Markov Models (HMMs) has been growing
in popularity over the last few years. The spectrum, excita-
tion, vibrato, and duration of singing voices in this approach
are simultaneously modeled with context-dependent HMMs
and waveforms are generated from the HMMs themselves.
HMM-based singing voice synthesis systems are heavily
based on the training data in performance because these sys-
tems are “corpus-based.” Therefore, HMMs corresponding to
contextual factors that hardly ever appear in the training data
cannot be well-trained. Pitch should especially be correctly
covered since generated F0 trajectories have a great impact
on the subjective quality of synthesized singing voices. We
applied the method of “speaker adaptive training” (SAT) to
“pitch adaptive training,” which is discussed in this paper.
This technique made it possible to normalize pitch based
on musical notes in the training process. The experimen-
tal results demonstrated that the proposed technique could
alleviate the data sparseness problem.

Index Terms— singing voice synthesis, hidden Markov
model, pitch adaptive training

1. INTRODUCTION
A statistical parametric approach to speech synthesis based
on hidden Markov models (HMMs) has been growing in
popularity over the last few years [1]. Context-dependent
HMMs are estimated from speech databases in this approach
and speech waveforms are generated from the HMMs them-
selves. This framework makes it possible to model different
voice characteristics, speaking styles, or emotions without
having to record large speech databases. For example, adap-
tation, interpolation, and eigenvoice techniques have been
applied to this system, which has demonstrated that voice
characteristics could be modified. A singing voice synthesis
system has also been proposed by applying the HMM-based
approach [2].

The quality of synthesized singing voices strongly de-
pends on training data because HMM-based singing voice
synthesis systems are “corpus-based.” Therefore, HMMs
corresponding to contextual factors that rarely appear in
training data cannot be well-trained. Although databases
including various contextual factors should be used in the
HMM-based singing voice synthesis systems, it is almost im-
possible to cover all possible contextual factors since singing
voices involve a huge number of contextual factors, e.g.,
keys, lyrics, dynamics, note positions, durations, pitch, etc.
Pitch should be properly covered particularly, since it has a
great impact on the subjective quality of synthesized singing
voices1. A technique using pitch-shifted pseudo-data [3] is
one solution to this problem. However, there are various
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Fig. 1. Overview of HMM-based singing voice synthesis sys-
tem.

other problems such as large computational costs. Although
data-level pitch normalization [4] has been proposed, there
are still some other problems such as the inconsistency be-
tween data and training. This paper proposes pitch adaptive
training for HMM-based singing voice synthesis to overcome
these problems. The differences between log F0 sequences
extracted from waveforms and the pitch of musical notes can
be modeled in the proposed training.

The rest of this paper is organized as follows. Section 2
overviews the HMM-based singing voice synthesis system.
Details on pitch adaptive training for HMM-based singing
voice synthesis are described in Section 3. Section 4 dis-
cusses subjective experiments and Conclusions are drawn in
Section 5.

2. HMM-BASED SINGING VOICE SYNTHESIS
SYSTEM

The HMM-based singing voice synthesis system is quite
similar to the HMM-based text-to-speech synthesis system.
However, there are distinct differences between them. Fig. 1
gives an overview of the HMM-based singing voice synthesis
system [2]. It consists of training and synthesis parts. The
spectrum (e.g., mel-cepstral coefficients), excitation, and vi-

1F0 modeling for HMM-based speech synthesis has also a great impact.
Many techniques has peen proposed [5, 6].
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brato are extracted from a singing voice database in the train-
ing part and they are then modeled with context-dependent
HMMs. Context-dependent models of state durations are
also estimated. An arbitrarily given musical score including
the lyrics to be synthesized is first converted to a context-
dependent label sequence in the synthesis part. Second, ac-
cording to the label sequence, an HMM corresponding to the
song is constructed by concatenating the context-dependent
HMMs. Third, the state durations of the song HMM are deter-
mined with respect to the state duration models. Fourth, the
spectrum, excitation, and vibrato parameters are generated
by an algorithm to generate the speech parameters. Finally,
a singing voice is synthesized directly from the generated
spectrum, excitation, and vibrato parameters by using a Mel
Log Spectrum Approximation (MLSA) filter.

3. PITCH ADAPTIVE TRAINING FOR HMM-BASED
SINGING VOICE SYNTHESIS

HMM-based systems for speech synthesis heavily depend
on training data in performance because these systems are
“corpus-based.” Therefore, HMMs corresponding to contex-
tual factors that hardly ever appear in the training data can-
not be well-trained. Algorithms used for designing speech
databases that take into consideration the balance between
contextual factors have been proposed [7] to solve this prob-
lem. Databases including various contextual factors should
also be used in HMM-based singing voice synthesis systems.
However, data have to be sparse because singing voices in-
volve numerous contextual factors, e.g., pitch, tempo, key,
beat, and dynamics, in addition to those used in reading
speech synthesis. Pitch should especially be correctly cov-
ered since generated F0 trajectories have a great impact on
the subjective quality of synthesized singing voices.

A technique using pitch-shifted pseudo-data [3] is one so-
lution to this problem. Since pitch is represented by a log F0
parameter, pitch-shifted pseudo-data can easily be prepared
by shifting log F0 up or down in halftones. This technique
makes it possible to increase the amount of F0 training data
without having to record large amounts of singing voice
data. Spectrum and vibrato parameters are added by copy-
ing the same data assuming that they have not been affected
by small amounts of pitch-shifting. The amount of training
data is increased threefold by adding pitch-shifted pseudo-
data. Therefore, decision trees increase in size when the
minimum description length (MDL)-based criterion is used.
Thus, context-clustering should be stopped when decision
trees reach an appropriate size. The MDL criterion is used in
the HMM-based singing voice synthesis system to determine
when splitting nodes should be stopped. The heuristic weight
is used to control the size of the decision trees. The quality of
synthesized voices is improved when the sizes of the decision
trees are properly adjusted.

Although the technique using pitch-shifted pseudo-data
improves the quality of synthesized voices, this technique has
four other problems:

1) The features included in a specific pitch range cannot
be modeled since the pitch contexts are mixed due to
pitch-shifted pseudo-data.

2) Whether or not singing voices can be synthesized out-
side the pitch range of the training data depends on the
amount of pitch-shifting.

3) Pitch-shifted pseudo-data increase the computational cost
in HMM training.
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Fig. 2. Comparison of data-level and model-level pitch nor-
malizations.

4) The amount of pitch-shifting and heuristic weights to con-
trol the number of parameters have to be properly ad-
justed manually.

Pitch normalization techniques are required to overcome
these four problems.

Data-level pitch normalization [4] is one solution to these
problems, where the differences between log F0 sequences
extracted from waveforms and the pitch of musical notes are
used for training data. However, there are still two other prob-
lems:

5) Alignments of musical note levels are required to prepare
the training data to calculate the differences.

6) If the alignments of musical note levels are fixed in HMM
training, no parameters (spectrum, excitation, vibrato,
or state duration) can be simultaneously estimated.
However, if they are not fixed in HMM training, the
differences cannot be estimated well because there are
inconsistencies between the data and training.

This paper proposes model-level normalization of pitch
to overcome these problems. The method of “speaker adap-
tive training” (SAT) [8] is applied to “pitch adaptive train-
ing.” Fig. 2 compares between data-level and model-level
pitch normalizations. The difference between the training
speaker’s voice and an average voice is assumed to be ex-
pressed in the SAT algorithm as a simple linear regression
function of the mean vectors of state output distributions:
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of state i for training speaker f , a transformation matrix that
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indicates the difference between training speaker f and an av-
erage voice, and extended mean vectors of the average voice.
The SAT algorithm simultaneously estimates both the param-
eter set of HMMs and the set of transformation matrices for
each training speaker so that the likelihood is maximized.
However, mean μ̂i of static features of log F0 in state i is
defined in the ptich adaptive training algorithm as

μ̂i = W iξi (4)

W i = [1, bi] (5)

ξi = [μi, 1]� (6)

where μi is the mean of the difference between log F0 ex-
tracted from the waveform and pitch of a musical note. The
bi is log F0 of a musical note that includes state i. Since the
transformation matrices are fixed by the musical score, pitch
adaptive training only estimates the parameter set of HMMs.
As a result, all problems with the conventional method can be
solved with the proposed training for 1-6 below:

For 1) The features included in a specific pitch range can
be modeled because all training data have correct pitch
contexts.

For 2) The differences between log F0 extracted from the
waveform and pitch of a musical note are modeled.
Therefore, pitch that does not appear in the training data
can be synthesized.

For 3) The total number of training data is not increased. The
computational cost is also not increased.

For 4) The MDL criterion can be used to automatically con-
trol the number of parameters.

For 5) Alignments of musical note levels are not required for
HMM training because of model-level normalization of
pitch.

For 6) There is no need to fix alignments in HMM training.
All parameters can be simultaneously estimated. There
are no inconsistencies between data and training.

4. EXPERIMENTS
Subjective experiments were conducted to evaluate the per-
formance of pitch adaptive training for HMM-based singing
voice synthesis.

4.1. Experimental conditions
Seventy Japanese children’s songs (total of 71.8 min) by a fe-
male singer were used. Singing voice signals were sampled
at 48kHz and windowed with a 5-ms shift. The feature vec-
tors consisted of spectrum, excitation, and vibrato parameters.
The spectrum parameter vectors consisted of 49 STRAIGHT
mel-cepstral coefficients including the zero coefficient, their
delta, and delta-delta coefficients. The excitation parameter
vectors consisted of log F0, its delta, and delta-delta. The
vibrato parameter vectors consisted of amplitude (cent) and
frequency (Hz), their delta, and delta-delta.

A seven-state (including beginning and ending null states),
left-to-right, no-skip structure was used for the hidden semi-
Markov model (HSMM). The spectrum stream was mod-
eled with single multi-variate Gaussian distributions. The
excitation and vibrato streams were modeled with multi-
space probability distribution HSMM (MSD-HSMM). The
state durations of each model were modeled with a five-
dimensional (equal to the number of emitting states in each

model) multi-variate Gaussian distribution. The decision tree-
based context-clustering technique was separately applied to
distributions for the spectrum, excitation, vibrato, state dura-
tion, and timing [9]. The MDL criterion was used to control
the size of the decision trees. A algorithm to generate speech
parameters that took into consideration context-dependent
global variance (GV) without silence was used for generating
the spectrum parameters.

A baseline method, a conventional method using pitch-
shift, and the proposed method using pitch adaptive training
were evaluated. Note that, to be fair, heuristic weights to con-
trol the number of parameter used in the conventional and
proposed methods were manually adjusted based on the base-
line method because the MDL criterion could not be used for
the conventional method. The range of pitch-shifted pseudo-
data was ± a halftone in the conventional method.

Ten songs not included in the training data were used for
the evaluation. Ten subjects were asked to rate the naturalness
of the synthesized singing voices on a Mean Opinion Score
(MOS) with a scale from 1 (poor) to 5 (good). Fifteen ran-
domly selected musical phrases were presented to each sub-
ject. The experiments were carried out in a sound-proof room.

4.2. Experimental results
Three subjective listening tests were conducted. Figs. 3 and 4
present the results for the 10 songs that were used for training.
The pitch range of the test songs (6.4 min, C4-D5) in Fig. 3
was included in the pitch range of the 10 training songs (7.1
min, C4-F5). The key of the test songs in Fig. 4, on the other
hand, was transposed up to a half octave (G�4-A�5). Fig. 5
has the results for the 60 songs (65.4 min, G3-F5) that were
used for training. The pitch range of the test songs in Fig. 5
was included in the pitch range of the 60 training songs. We
can see from Fig. 4 that the conventional and proposed meth-
ods achieved better subjective scores than the baseline method
when the key of the test songs was transposed up to a half oc-
tave. Compared with the conventional method, the proposed
method could model pitch that did not appear in the training
data because of model-level normalization of pitch. It can be
seen from Figs. 3 and 5 that the features included in a spe-
cific pitch range could be modeled with the proposed method
when the total amount of training data was increased.

Table 1 summarizes the computation time for HMM train-
ing. The conventional method spent a long time on computa-
tion because the amount of training data was increased three-
fold by adding pitch-shifted pseudo-data. The computation
time for the proposed method was almost the same as that for
the baseline method.

The log F0 sequences of synthesized /a/ phonemes (A4,
C5, E5, and G5) were plotted to evaluate the performance of
excitation modeling. Fig. 6 shows the results. The solid line
indicates a log F0 sequence calculated with the musical score
and the broken lines indicates the log F0 sequences gener-

Table 1. Computation time for HMM training.

Method Number of songs for training
10 songs 60 songs

Baseline 9.3h 85.5h
Conventional 25.3h 274.0h

Proposed 9.5h 93.0h
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Fig. 3. Subjective evaluation results: 10 songs were used for
training. Pitch range of test songs was included in pitch range
of 10 training songs.
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Fig. 5. Subjective evaluation results: 60 songs were used for
training. Pitch range of test songs was included in pitch range
of 60 training songs.

ated by all the methods. Note that vibrato models were not
used to enable better visualization. Musical note “E5,” which
hardly ever appeared in the training data, could not be gener-
ated in the baseline method. It can be seen that the conven-
tional method cannot generate log F0 sequences for musical
note “G5.” The proposed method could generate all pitches
even if a specific pitch did not appear in the training data.

5. CONCLUSIONS
We applied the method of “speaker adaptive training” to
“pitch adaptive training” to the research discussed in this pa-
per. This technique made it possible to normalize pitch based
on musical notes in the training process. The experimental
results revealed that the proposed technique could alleviate
the data sparseness problem. Future work include evaluations
which speech parameters affect the singing voice quality of
the proposed technique.
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