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ABSTRACT

Music spectrograms typically have many structural regularities that
can be exploited to help solve the problem of decomposing a given
spectrogram into distinct musically meaningful components. In this
paper, we introduce new variants of the non-negative matrix factor-
ization concept that incorporate music-specific constraints.

Index Terms— Non-negative Matrix Factorization, Music tran-
scription, Source separation

1. INTRODUCTION

Non-negative Matrix Factorization (NMF) [1] is a relatively recent
technique, which is used to decompose a data matrix Y into two
factors H and U with non-negative entries. Owing to its simplic-
ity and intuitive decomposition, it has attracted a lot of attention in
many scientific and engineering areas in recent years. In the area of
music signal processing, one successful approach involves applying
NMF to a magnitude spectrogram (time-frequency representation)
interpreted as a non-negative matrix [2], where the spectrogram Y
is factorized into the product of a basis matrixH consisting of spec-
trum atoms and an activation matrix U consisting of time-varying
amplitudes associated with these atoms. An important feature of
this approach is that it is capable of finding a finite set of spectrum
atoms that are considered to be the dominant elements constituting
the observed spectrogram, in an unsupervised manner. This ability
is proven to be very powerful and has enabled the NMF approach to
be applied with notable success to many tasks including monaural
source separation, noise reduction, music transcription, bandwidth
expansion, and missing data imputation.

NMF usually considers decompositions that are approximative
in nature. That is, the decomposition is performed so that the prod-
uct X = HU should approximate the original data Y as well as
possible. Although the approximation error can be minimized as de-
sired by using a larger number of spectrum atoms, the obtained basis
vectors will be less likely to represent the spectra of meaningful au-
dio events as the number of bases becomes larger. As an extreme
example, if we use the same number of bases as the number of the
frequency bins, we obtain an exact reconstruction Y = X = HU
under a trivial solution H = I (where I is an identity matrix) and
U = Y , which is no longer a meaningful decomposition. On the
other hand, if we use a relatively small number of bases, the chance
of obtaining a meaningful decomposition will increase, but the re-
sulting decomposition will become less accurate. This illustrates the
fact that, for classical NMF, there is a trade-off between the accuracy
of the reconstruction and the meaningfulness of the decomposition.
To achieve an accurate approximation and thus explain the data with
the NMF model as well as possible, we must use many bases. To ob-
tain a meaningful decomposition while using many bases, we must

incorporate reasonable assumptions other than non-negativity to fur-
ther constrain the modelHU .

Another issue concerning NMF is the local optimum problem.
Typically most cost functions used in NMF are difficult to optimize
analytically with respect to H and U . In addition, they are not
jointly convex in both of the argumentsH andU . Thus, many exist-
ing algorithms developed for NMF are guaranteed to converge to one
of the stationary points but not necessarily to a global optimum. In
particular, when applying NMF to music signals, we would want to
avoid local optimum solutions that are “musically” unacceptable. A
good strategy to guarantee that we obtain a musically likely solution
would be to incorporate music-specific constraints into the model
HU or into the optimization problem.

Using these considerations as a basis, we have been concerned
with developing improved variants of NMF, tailored specifically for
music signals, by utilizing reasonable assumptions that we can make
about music spectrograms. This paper introduces our ongoing work
along with some new ideas on NMF variants incorporating music-
specific constraints.

2. NMF WITH TIME-VARYING BASIS SPECTRA
2.1. Motivation
When applying the classical NMF to music spectrograms, we may
expect the spectra of a single note produced by a musical instru-
ment to be represented using a single basis spectrum scaled by time-
varying amplitudes. However, its variations in time are actually
much richer. A piano note would be more accurately characterized
by a succession of several basis spectra corresponding to, for exam-
ple, “attack”, “decay”, “sustain” and “release” segments. As another
example, singing voices and string instruments feature a particular
musical effect, vibrato, which can be characterized by its “depth”
(the range of pitch variation), and its “speed” (the rate at which the
pitch varies). Learning such time-varying spectra with the classi-
cal NMF would require the use of a large number of bases, and
some postprocessing to group the bases into single events. How-
ever, as indicated earlier, blindly increasing the number of bases will
not necessarily give meaningful decompositions at the NMF stage.
If we want to increase the number of bases while maintaining the
meaningfulness of the decomposition, we will need some additional
constraints and/or regularization to correspondingly reduce the de-
gree of freedom of the model. In this section, we briefly review the
model described in [3, 4], which is designed to undertake the de-
composition and group the basis spectra simultaneously based on
the concept of time-varying basis spectra.

2.2. Model
Let us begin by dividing the bases into groups each of which we
expect to correspond to a single note produced by a particular mu-
sical instrument. The NMF model X = (Xω,t)Ω×T can then be
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expressed as

Xω,t =

KX
k=1

IkX
i=1

H
(i)
ω,kU

(i)
k,t, (1)

where k is the group index, i is the basis index in each group, Ik is
the number of basis spectra in group k, and ω and t are frequency
and time indices, respectively. Note that so far this is the same as the
classical NMF model with

P
k Ik bases. We shall now introduce the

following assumptions to constrain the model:

1. For each time t, exactly one basis spectrum in each group is
allowed to be activated.

2. For each group k, the order in which the basis spectra appear
is governed by a Markov chain.

By incorporating assumption 1, the model can be rewritten as

Xω,t =

KX
k=1

H
(Zk,t)

ω,k Uk,t, (2)

where Zk,t ∈ {1, . . . , Ik} denotes a hidden state variable indicating
which basis spectrum is supposed to be activated at time t. Notice
that the superscript i is dropped from U in (2) as it is no longer nec-

essary since we are assuming U
(i)
k,t = 0 for i �= Zk,t. From assump-

tion 2, the path of the state variables Zk,1, . . . , Zk,T is governed by
a state transition probability p(Zk,t = a|Zk,t−1 = b) = πk,a,b.

Now, let D(x, y) be a discrepancy measure between x and y
such that D(x, y) ≥ 0 and D(x, y) = 0 only if x = y. We can then
define a goodness-of-fit measure between the observed spectrogram
Y and the current NMF modelX

J (Y ,X) =
X
ω,t

D(Yω,t, Xω,t). (3)

If we define D(x, y) as the I-divergence [5]

D(x, y) = y log
y

x
− (y − x), (4)

then minimizing J (Y ,X) with respect to X is known to amount
to maximizing the Poisson likelihood

p(Y |X) =
Y
ω,t

Poisson(Yω,t; Xω,t), (5)

where Poisson(y; x) = xye−x/y!. From assumption 2, p(Z) is
defined by

p(Z) =
Y
k

p(Zk,1|πk0)

T−1Y
t=2

p(Zk,t|Zk,t−1,ık), (6)

where ık = {πk,a,b}1≤a≤Ik,1≤b≤Ik
.

Readers are referred to [3, 4] for detailed derivations of the pa-
rameter inference algorithms under this setting: [3] describes an al-
gorithm for finding the Maximum A Posteriori (MAP) estimates of
H , U and Z. [4] describes a nonparametric Bayesian formulation
of the proposed NMF variant, making it possible to infer the number
of groups, K, and the number of basis spectra in each group, Ik,
along with the posterior distributions ofH , U and Z.

(a) (b)

(c) (d)

Fig. 1. Portions of the spectrograms of a mixture of 3 voices (a),
estimated components corresponding to A� (b), F (c), and D� (d).

2.3. Related work
The model described above can be viewed as a factorial hidden
Markov model (HMM) [6]. Recently, several authors have inde-
pendently proposed modeling spectrograms using factorial HMMs
[7, 8]. Let us consider a factorial HMM where the latent com-
ponent generated from the k-th HMM is denoted by Ck,ω,t, and
the observed data Yω,t are assumed to be the sum of Ck,ω,t over k.

Now, if we assume Ck,ω,t ∼ Poisson(Ck,ω,t; H
(Zk,t)

ω,k Uk,t), we can
confirm that the assumed factorial HMM amounts to the model de-
scribed in 2.2. If we assume Ck,ω,t ∼ NC(Ck,ω,t; 0, H

(Zk,t)

ω,k Uk,t),

where NC(y; 0, x) ∝ (1/x)e−|y|2/x, then it amounts to the model
presented in [7].

2.4. Experiment
Fig. 1 shows the decomposition achieved by the present model. Here
we used a signal composed of 3 notes (D� F A�): first, each note
is played alone in turn, then all two note combinations are played
and finally all the notes are played simultaneously. As can be seen
from Fig. 1, the present model is capable of grouping together the
spectra originating from one voice even though there is a variation
in pitch (vibrato).

3. NMF WITH BEAT STRUCTURE CONSTRAINT
3.1. Motivation
Music is highly structured in terms of the temporal regularity under-
lying the onset occurrences of notes. In general, the time between
consecutive onsets corresponds to multiples and fractions of the beat
period, with small deviations in timing and tempo. As we wanted
each basis spectrum to correspond to a single note, the onsets of
the basis spectra should have this rhythmic structure, which can be
effectively used to constrain the activation matrix U . In this sec-
tion, we propose the introduction of a constrained variant of NMF,
in which the activation matrix model is parameterized by note on-
sets, beat locations and tempo. To our knowledge, this is the first
NMF approach that explicitly incorporates constraints derived from
the rhythmic structure of music. In the following, we describe only
the basic idea. For more details, please refer to [9].

3.2. Model
Let us consider a standard NMF model

Xω,t =
X

d

Hω,dUd,t. (7)

Based on the rhythmic structure of music, we make the following
assumptions as regards constraining the activity function Ud,t:
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1. Each activity function consists of local activity patterns,
called “objects”, each of which we expect to correspond to a
single note activation.

2. Each object is characterized by a fast/slow rise at the onset
time followed by a 1continuous contour.

3. The onset of each object is likely to be located on the multi-
ples or fractions of the beat period.

4. The beat period varies gradually over time.

First, from assumption 1, Ud,t should be written as

Ud,t =

LdX
l=1

Vd,l,t, (8)

where Vd,l,t is the l-th object and Ld is the number of objects in
the d-th activity function. To incorporate assumption 2 into Vd,l,t,
we introduce a parametric model, which is expressed as the sum of
Gaussians [11]

Vd,l,t =

MX
m=1

vd,lwd,l,m√
2πφd,l

e−(t−(m−1)φd,l−τd,l)
2/2φ2

d,l , (9)

where vd,l, τd,l and φd,l are the total energy, onset time and pa-
rameter related to the duration of the l-th object, respectively.
wd,l,1, . . . , wd,l,M are the weights associated with the M Gaus-
sians that sum to unity, which determine the shape of the object.
Under this constrained model Xω,t, we assume a Poisson likelihood
as with 2.2, p(Y |H,v,w, fi ,ffi) =

Q
ω,t Poisson(Yω,t; Xω,t). To

avoid overfitting the shape of each object, we place a Dirichlet prior
over wd,l = {wd,l,m}1≤m≤M , p(w) =

Q
d,l Dirichlet(wd,l;¸),

where Dirichlet(y;x) ∝ Q
i yxi−1

i and ¸ denotes the most
expected shape of the object. To promote sparsity of the ac-
tivity function, we place a generalized Gaussian prior over vd,l,

p(v) =
Q

d,l GN (vd,l; 0, λ, p), where GN (y; 0, λ, p) ∝ e−λ|y|p

and 0 < p < 2. Furthermore, to ensure that each basis spectrum
has a harmonic structure of a particular pitch, we shall also place a
Gamma prior overH , p(H) =

Q
ω,d Gamma(Hω,d; βH̄ω,d+1, β),

where Gamma(x; a, b) ∝ xa−1e−bx.
Next, to impose Assumption 3, we first introduce a set of hy-

perparameters,  = {ψj}1≤j≤J , where ψj corresponds to the time
interval between the j-th and (j − 1)-th beat locations. With these
hyperparameters, we can design a Gaussian prior distribution over
the onset parameter τd,l

p(fi | ) =
Y
d,l

N (τd,l; ρl, ν
2), (10)

ρl =

�l/I�X
j=1

ψj + (l/I − �l/I	) ψ�l/I�+1, (11)

where N (y; x, σ2) ∝ e−(y−x)2/2σ2
, ρl denotes the most expected

location of the onset of the l-th object, ν2 is the variance of the Gaus-
sian indicating how much τd,l is allowed to deviate from ρl, I is the
number of divisions per beat, and �x	 denotes the largest integer not
greater than x. To impose Assumption 4, it is convenient to place a
Gaussian chain hyperprior over  

p( ) = p(ψ1)

JY
j=2

p(ψj |ψj−1), (12)

1This assumption is made according to the suggestion that continuity con-
straints can improve the performance of NMF-based source separation [10].
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Fig. 2. Estimates of pitch, onsets/offsets, and beat locations of each
note obtained with the present model applied to polyphonic data.

p(ψj |ψj−1) = N (ψj ; ψj−1, σ
2). (13)

Putting altogether, the posterior density of the unknown param-
eters is given by

p(H,v,w, fi ,ffi, |Y )

∝ p(Y |H,v,w, fi ,ffi)p(H)p(v)p(w)p(fi | )p( ). (14)

The MAP estimates of H,v,w, fi ,ffi, can be found through an
iterative algorithm consisting of parameter updates given in closed
form. See [9] for its derivation.

3.3. Experiment
Fig. 2 shows an example of the application of the present model to
polyphonic piano music. With the present model, we were able to
estimate the pitch and onset of each note with a high detection rate,
compared with the baseline NMF model [9].

4. NMF WITH TIMBRAL CLUSTERING CRITERION
4.1. Motivation
In general, each piece of music is typically played by only a handful
of musical instruments or sung by one or a few singers. Thus, the
constituent sounds contained in a single piece of music can probably
be grouped into a reasonably small number of clusters in a certain
feature space that best represents the timbral aspect of the instru-
ments or human voice. Based on this expectation, we consider in-
corporating a timbral clustering criterion for H into the objective
function for NMF to effectively constrain the solution space ofH .

4.2. Model
Let us begin by considering the standard NMF model given in (7).
We are concerned with the problem of finding a decomposition such
that Y 
 HU in which the basis spectra are forced to be clustered
into some number K of clusters in a certain feature space, where
we shall suppose that the value of K is given. Here we expect each
group k to consist of a set of basis spectra that are timbrally con-
sistent, meaning that all the basis spectra assigned to the same clus-
ter are expected to be mapped onto a single point in some timbral
space. Our preliminary experiments on an instrument identification
task using monophonic data revealed that the mel-frequency cep-
stral coefficient (MFCC) is a reasonably relevant feature for robustly
identifying the kinds of instruments, and so we choose here to as-
sume the MFCC space as the feature space. The MFCC of the d-th
basis spectrum is, by definition, given by

Hm,d =
X

n

cm,n log
X

ω

fn,ωHω,d, (15)
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where {fn,ω}1≤ω≤Ω denotes the n-th triangular mel-filter in the
mel-frequency filterbank and {cm,n}1≤n≤N denotes a set consist-
ing of the discrete cosine transform coefficients. It is worth noting
that this expression reduces to the mel-spectrum when cm,n = δm,n

(where δ denotes Kronecker’s delta), and the log-power spectrum
when fn,ω = δn,ω and cm,n = δm,n. For each basis spectrum
d, we introduce a corresponding set of binary indicator variables
rd,k ∈ {0, 1}, describing to which of the K clusters the d-th basis
spectrum is assigned, so that if the d-th basis spectrum is assigned
to cluster k then rd,k = 1, and rd,k′ = 0 for k′ �= k. By using —k

to denote a prototype vector associated with the k-th cluster, we can
define a cost function representing the sum of the distances of each
feature vector to the prototype vector of the assigned cluster

R(H, r,—) =
X

d

X
k

rd,k

‚‚Hd − —k

‚‚2

2

=
X

d

X
k

rd,k

X
m

˛̨Hm,d − μm,k

˛̨2
, (16)

where r = {rd,k}1≤d≤D,1≤k≤K and — = {—k}1≤k≤K . Hd :=
(H1,d,. . . ,HM,d)

T denotes the feature vector of the d-th basis spec-
trum. Our goal is to find values forH ,U , r, and— so as to minimize

J (Y ,HU) + λR(H, r,—), (17)

where λ > 0 is a regularization parameter. We can do this through an
iterative procedure in which each iteration involves four successive
steps corresponding to successive optimizations with respect to H ,
U , r and —. Although the optimization with respect to H is math-
ematically intractable, we can derive a closed form update equation
that guarantees a certain decrease in the objective function by using
an auxiliary function approach. To do this, the first step is to define
an upper bound function for the objective function (17). Owing to
space limitations, we only show an upper bound function R+ for the
regularization term R without proof:

R+(H, r,—, q,j,�, ‰,ffi)
H
= (18)

X
d,k

rd,k

X
n

An,d

„ X
ω

ρn,ω,d
2

fn,ωHω,d
+ h(ξn,d)

X
ω

fn,ωHω,d

«

+
X
d,k

rd,k

X
n

1[Bn,d,k ≥ 0]
|Bn,d,k|

φn,d

X
ω

fn,ωHω,d

−
X
d,k

rd,k

X
n

1[Bn,d,k < 0]|Bn,d,k|
X

ω

νn,ω,d log Hω,d,

where
H
= denotes equality up to a term independent of H , 1[·]

is the indicator function that takes the value 1 if its argument
is true and 0 otherwise, An,d =

P
m cm,n

2/βm,n,d, Bn,d,k =
−2

P
m αm,n,dμm,kcm,n/βm,n,d, and h(x) = 2 log(x)/x+1/x2.

αm,n,d ρn,ω,d, νn,ω,d, ξn,d and φn,d are auxiliary variables. βm,n,d

is an arbitrary parameter satisfying βm,n,d > 0 and
P

n βm,n,d = 1.
An exact bound is achieved when

αm,n,dμm,k = cm,n log
X

ω

fn,ωHω,d

+ βm,n,d(Hm,d − μm,k), (19)

ρn,ω,d = νn,ω,d =
fn,ωHω,dX

ω′
fn,ω′Hω′,d

, (20)

ξn,d = φn,d =
X

ω

fn,ωHω,d. (21)

Fig. 3. An example of the decomposition obtained with the proposed
regularized NMF.

4.3. Experiment
Fig. 3 shows an example of the basis spectra/activations obtained
from polyphonic music played on a piano and a bass guitar (its spec-
trogram is shown lower right), where we assumed K = 2. The basis
spectra/activations corresponding to clusters 1 and 2 are different
colors. In this example, we were able to group together the spectra
originating from the same instrument automatically with the present
method, even thoughH and U were initialized randomly.

5. SUMMARY

This paper introduced our ongoing work along with some new ideas
on constrained variants of NMF that incorporate structural regular-
ities underlying music. In the future, we plan to combine the ideas
introduced in this paper to construct a unified model. While we have
focused solely on the physical aspects of the regularities in music, we
are also concerned with incorporating symbolic regularities, such as
tonality and harmony.
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