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ABSTRACT
Probabilistic models of audio spectrograms used in audio

source separation often rely on Poisson or multinomial noise

models corresponding to the generalized Kullback-Leibler

(GKL) divergence popular in methods using Nonnegative

Matrix Factorization (NMF). This noise model works well

in practice, but it is difficult to justify since these distribu-

tions are technically only applicable to discrete counts data.

This issue is particularly problematic in hierarchical and non-

parametric Bayesian models where estimates of uncertainty

depend strongly on the likelihood model. In this paper, we

present a hierarchical Bayesian model that retains the flavor

of the Poisson likelihood model but yields a coherent gener-

ative process for continuous spectrogram data. This model

allows for more principled, accurate, and effective Bayesian

inference in probabilistic NMF models based on GKL.

Index Terms— NMF, audio, Bayesian models, varia-

tional inference, blind source separation.

1. INTRODUCTION

Nonnegative matrix factorization (NMF) [1] is a popular

method that approximately decomposes an M ×N matrix X
of nonnegative data into an M ×K matrix W and a K ×N
matrix H whose entries are also nonnegative. NMF and

its variants are particularly widely used in the audio source

separation community, which has found that applying such

decompositions to magnitude spectrograms results in W ma-

trices whose columns tend to correspond to the spectra of

audio sources present in a mixed recording.

Typically for K < min{M,N} no setting of W and H
can satisfy X = WH exactly; the NMF problem is there-

fore framed in terms of minimizing some cost D(X,WH).
[1] presented efficient and simple multiplicative update algo-

rithms for two such costs: Euclidean distance and generalized

Kullback-Leibler divergence, the latter being defined as

DGKL(X,Y ) ≡ ∑
m,nXm,n log

Xm,n

Ym,n
−Xm,n+Ym,n. (1)

As shorthand, we will refer to NMF optimizing the cost

DGKL(X,WH) as “KL-NMF.” KL-NMF has proven to give

better results for audio spectrograms than NMF optimizing

Euclidean distance [2].

In the last five years, there has been increasing inter-

est in probabilistic interpretations of and extensions to KL-

NMF. In particular, it has been observed that minimizing

DGKL is equivalent to finding the maximum-likelihood

estimate (MLE) of W and H under the model Xm,n ∼
Poisson([WH]m,n), where [WH]m,n denotes element m,n
of the product of W and H . This interpretation has led to

many probabilistic extensions to NMF that use the formal-

ism of hierarchical Bayesian modeling to build additional

assumptions and prior knowledge into this simple Poisson

likelihood model (e.g. [3, 4, 5, 6, 7]) 1.

There is an obvious issue with the Poisson interpreta-

tion of KL-NMF, at least as applied to audio spectrograms:

spectrogram data is inherently continuous, and the Poisson

distribution is a distribution over discrete counts. Naively

treating the Poisson probability mass function as a prob-

ability density function results in a density that does not

integrate to 1. One can address this issue by quantiz-

ing the audio spectrogram data, for example by assuming

�νXm,n� ∼ Poisson([WH]m,n), where the scaling factor

ν controls the fineness of this quantization. When comput-

ing point estimates of W and H one can avoid any loss

of resolution by making ν arbitrarily large; in fact, since

DGKL(X,Y ) = DGKL(νX, νY )/ν for any ν and rescaling

X therefore only affects the MLE of W and H by a multi-

plicative constant, one can argue that KL-NMF maximizes∏
m,n Poisson(�νXm,n�; ν[WH]m,n) for some very large

value of ν. Though technically correct, there is a statistical

problem with this interpretation. The ratio of the standard

deviation of the Poisson distribution to its mean λ decreases

as 1/
√
λ, so as ν → ∞, the noise level assumed by the model

goes to −∞ dB, meaning that the model is inconsistent with

any X of rank greater than K. In practice, though, when

fitting point estimates of W and H (possibly with regular-

ization as in maximum a posteriori (MAP) estimation) this

1Some of this work uses multinomial instead of Poisson likelihoods—

most of the derivations and observations in this paper can be adapted to such

models with only minor changes.
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technical issue does not seem to cause much trouble.

The issue of scaling is more serious in the fully Bayesian

setting, where we are interested in making inferences about

the posterior p(W,H|X, ν). Bayesian inference methods

such as variational Bayes (VB) and Markov chain Monte

Carlo (MCMC) have several advantages over point estima-

tion methods such as MLE and MAP: they offer an estimate

of the uncertainty of the parameter estimates, they permit

automatic selection of the model orderK via Bayesian model

selection [5] or Bayesian nonparametric modeling [6, 7],

and they allow one to automatically fit the hyperparameters

that control the prior distributions on W and H rather than

(mis)specifying them by hand as MAP methods require (try-

ing to fit hyperparameters in MAP inference often leads to

degeneracies) [8]. The scaling parameter ν is critical to real-

izing these advantages, however. Since ν effectively controls

the noise level assumed by the model, a too-small value of ν
will lead to a diffuse posterior that is dominated by the prior

terms, underfits, and prefers to use too few latent components.

Conversely, a too-large value of ν will lead to a posterior that

is centered too tightly around the MLE, ignores the prior

terms, and prefers to use too many latent components.

These issues motivate the likelihood model presented in

this paper, which we call Poisson-uniform NMF (PUNMF).

PUNMF is a generative model of continuous nonnegative

matrices that retains a Poisson-like likelihood model but fits

the scaling parameter ν automatically, permitting the princi-

pled use of Bayesian inference methods such as variational

Bayes (VB) or Markov chain Monte Carlo (only the former

is treated in this paper due to space limitations). In the fol-

lowing sections, we will derive the PUNMF model and a

corresponding VB inference algorithm, and evaluate this VB

algorithm’s ability to automatically tune its prior distributions

to give good performance on a blind source separation task.

These experiments will demonstrate the importance of the

scaling parameter ν to this task.

2. POISSON-UNIFORM NMF

Poisson-uniform NMF (PUNMF) assumes that the follow-

ing two-step stochastic process generated the spectrogram X
given the component matrix W and the activation matrix H:

X̃m,n ∼ Poisson(ν[WH]m,n);

νXm,n ∼
{

Uniform([X̃m,n, X̃m,n + 1)) ifX̃m,n > 0;

Beta(α, β)) ifX̃m,n = 0.

(2)

We first draw a discrete variable X̃m,n from a Poisson dis-

tribution with mean [WH]m,n. Then, if X̃m,n is greater than

0, we sample the observed value Xm,n from a uniform dis-

tribution varying between
X̃m,n

ν and
X̃m,n+1

ν . If Xm,n = 0,

we sample Xm,n from a rescaled beta distribution with pa-

rameters α and β. Note that given Xm,n we can infer that
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Fig. 1. Histograms of spectrogram amplitudes within vari-

ous ranges. Each histogram shows the relative frequencies of

amplitudes of a scaled spectrogram νX that fall within the

ranges [0, 1), [1, 2), etc. The range [0, 1) is much less uni-

formly distributed than the higher ranges.

X̃m,n = �νXm,n�; this property dramatically simplifies in-

ference forW andH . The additional complexity of modeling

some elements ofX as coming from a beta distribution is nec-

essary to capture the nonuniform shape of the noise floor of

audio magnitude spectra, which is illustrated in figure 1.

The PUNMF likelihood model is compatible with any

prior specification for W and H . In this paper, we use a

simple independent gamma prior forW and the gamma chain

prior of [4] to enforce smoothness on H:

Wm,k ∼ Gamma(a, a); Hk,n ∼ Gamma(b, Zk,n);

Zk,1 ∼ Gamma(b, bc); Zk,n>1 ∼ Gamma(b,Hk,n−1).

Given W and H and letting p0m,n = Poisson(0; ν[WH]m,n),
the expected value of the observed spectrogram X is

Ep[Xm,n|W,H] = p0m,n
α
νβ + (1− p0m,n)([WH]m,n + 1

2ν ).
(3)

Thus, PUNMF defines a coherent generative process that as-

sumes that the elements of X are produced by corrupting

WH with both Poisson and uniform or beta noise.

3. VARIATIONAL INFERENCE FOR PUNMF

In this section we derive a variational Bayesian inference al-

gorithm for the PUNMF model. We will fit a variational dis-

tribution q(W,H) of the form

q(W,H) = (
∏

m,k Gamma(Wm,k; γ
W
m,k, ρ

W
m,k))

× (
∏

k,n Gamma(Hk,n; γ
H
k,n, ρ

H
k,n)) (4)
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to minimize the Kullback-Leibler divergence (KLD)

DKL(q(W,H)||p(W,H|X, a, b, c, ν, α, β)) between q and

the posterior over W and H given the data X and the hyper-

parameters a, b, c, ν, α and β. We fit point estimates of these

hyperparameters by maximum marginal likelihood.

We approximately minimize the KLD between q and the

target posterior by maximizing the following Evidence Lower

BOund (ELBO) on the marginal probability of the data [9]:

log p(X) ≥ Eq[log p(X,W,H)]− Eq[log q(W,H)]

≥ ∑
m,n I[�νXm,n� = 0] logBeta(νXm,n;α, β)

+ �νXm,n� log(ν
∑

k e
Eq [logWm,k]+Eq [logHk,n])

− ν
∑

k Eq[Wm,kHk,n]− log Γ(�νXm,n�+ 1))

+
∑

m,k(a− γWm,k)Eq[logWm,k]− (a− ρWm,k)Eq[Wm,k]

− γWm,k log ρ
W
m,k + log Γ(γWm,k)

+
∑

k,n(b− γZk,n)Eq[logZk,n]−
∑

k(bc− ρZk,1)Eq[Zk,1]

−∑
k

∑N
n=2(bEq[Hk,n−1]− ρZk,n)Eq[Zk,n]

+
∑

k,n(b− γHk,n)Eq[logHk,n]

−∑
k,n(bEq[Zk,n]− ρHk,n)Eq[Hk,n]

+Kb log c+ b
∑

k

∑N−1
n=1 Eq[logHk,n]

+ b(
∑

k,n Eq[logZk,n]) + 2KN(b log b− log Γ(b))

+MK(a log a− log Γ(a)) +MN log ν,

(5)

where I[·] is 1 if its argument is true and 0 otherwise and

Γ(·) denotes the gamma function. As in [5], we lower

bound the intractable expectation Eq[log
∑

kWm,kHk,n]
with log

∑
k e

Eq [logWm,k]+Eq [logHk,n] using the convexity of

the log-sum-exp function. The necessary expectations are

Eq[logWm,k] = ψ(γWm,k)− log ρWm,k; Eq[Wm,k] =
γW
m,k

ρW
m,k

;

Eq[logHk,n] = ψ(γHk,n)− log ρHk,n; Eq[Hk,n] =
γH
k,n

ρH
k,n

(6)

We maximize the ELBO using coordinate ascent. Using

Jensen’s inequality as in [1] or an equivalent argument based

on latent variables as in [5], one can show that the updates

γWm,k = a+ eEq [logWm,k]
∑

n�νXm,n�eEq [logHk,n];

ρWm,k = a+ ν
∑

n Eq[Hk,n], (7)

increase the ELBO (unless it is already at a maximum). The

updates

γHk,n<N = 2b+ eEq [logHk,n]
∑

m�νXm,n�eEq [logWm,k];

γHk,N = b+ eEq [logHk,N ]
∑

m�νXm,n�eEq [logWm,k];

ρHk,n<N = b(Eq[Zk,n] + Eq[Zk,n+1]) + ν
∑

m Eq[Wm,k];

ρHk,N = bEq[Zk,N ] + ν
∑

m Eq[Wm,k] (8)

and

γZk,n = 2b; ρZk,1 = b(c+ Eq[Hk,1]);

ρZk,n>1 = b(Eq[Hk,n−1] + Eq[Zk,n]) (9)

likewise increase the ELBO with respect to γH and ρH and

γZ and ρZ , respectively.

Closed-form updates for the hyperparameters a, b, α, β,
and ν are not available. We optimize the hyperparameters a,

b and c, and α and β via Newton’s method. The optimal val-

ues of these hyperparameters only depend on summary statis-

tics of the data and the variational parameters γ and ρ, so

they can be fit efficiently. The ELBO is discontinuous with

respect to ν, but the local optima are quite shallow. We can

therefore find a local optimum at or near the global optimum

using a bisection search—in practice, this approach seems to

produce solutions near the global optimum. The terms in the

ELBO that depend on ν cannot be efficiently summarized, so

this step is more expensive; we amortize this expense by only

updating ν once for every ten times we update the other pa-

rameters.

4. EXPERIMENTAL EVALUATION

The primary difference between PUNMF and previous hierar-

chical Bayesian NMF models with Poisson emission models

is that in previous work the scaling parameter ν is fixed at

some arbitrary value (or is implicitly set at ν = 1), while in

PUNMF ν is fit based on the data. In this section we show the

practical importance of selecting an appropriate value for ν.

The task is to decompose a single-channel mixed audio

signal into several tracks, each of which contains only the

audio generated by a single instrument at a single pitch. In

our experiment, we used a synthesized recording consisting

of a mixture of 10 seconds of randomly generated clarinet

and organ music. The samping rate is 44.1KHz. At all times

there are two clarinet tones and two organ tones playing, the

tones being randomly selected from a single octave of a C

pentatonic scale starting an octave below middle C. There

are thus a total of 10 unique tones, and the task is to iso-

late the signals associated with each of them. We do so

by fitting an NMF model with K = 10 latent sources to

the audio magnitude spectrogram (generated with no over-

lap and a Hamming window of 1024 samples), estimating

the contribution of latent source k at time n and frequency

bin m as Xm,nWm,kHk,n/[WHm,n], and using Wiener

filtering to isolate the energy associated with each latent

source k. We then used the BSS EVAL toolbox [10] to eval-

uate the signal-artifact-ratios (SAR), signal-distortion-ratios

(SDR), and signal-interference-ratios (SIR) for each signal,

which each measure a different dimension of the quality of

the separation of each signal. The numbers we report are

the SAR, SDR, and SIR averaged across the 10 separated

signals. The separated signals are matched to the source
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Fig. 2. Summary of blind source separation experiments.

The dashed horizontal lines show the performance of classic

KL-NMF, the solid horizontal lines show the performance of

PUNMF with the scaling parameter ν fit automatically, and

the solid curves show the performance of PUNMF for various

fixed values of ν. Each “x” denotes a learned value for ν from

a different run.

signals by the toolbox. The evaluation code is available at

http://www.cs.princeton.edu/~mdhoffma.

We compared three approaches: PUNMF with gamma

chain priors on H , fitting all hyperparameters; PUNMF with

gamma chain priors on H , fitting all hyperparameters except

ν and holding ν fixed at a variety of settings; and maximum-

likelihood estimation (MLE) of W and H , implemented via

the original multiplicative algorithm of [1]. For each run, we

applied each approach with five different random initializa-

tions and used the decomposition that gave the best ELBO

(for PUNMF) or DGKL score (for MLE). We repeated this

process five times, averaging the mean SAR, SDR, and SIR

across the five super-runs. Figure 2 plots the average SAR,

SDR, and SIR as a function of the scaling parameter ν for

the PUNMF models with fixed ν. The solid horizontal line

shows the average performance of PUNMF with optimized ν,

and the dashed horizontal line shows the performance of the

classic MLE method. The five “x” marks on the solid hori-

zontal line show the values of ν that were chosen by PUNMF.

PUNMF with the gamma chain prior on H generally out-

performs the simple Poisson MLE on this task, but its perfor-

mance is dependent on the scaling parameter ν, which affects

the analysis mostly by determining the relative influence of

the prior and the likelihood. Settings between about ν = 125
and ν = 325 give the best performance; as ν increases beyond

this region overfitting becomes a problem (since the data are

given too much weight), while as ν decreases underfitting and

quantization error become more of a concern. In four out of

five cases, PUNMF finds a value for ν that gives near-optimal

performance, indicating that fitting this hyperparameter auto-

matically is viable.

5. DISCUSSION

We have presented PUNMF, a likelihood model for hierarchi-

cal Bayesian NMF models to audio spectra that addresses the

modeling issues associated with trying to fit continuous au-

dio spectrograms with a fundamentally discrete noise model.

PUNMF’s likelihood model can be swapped in for the basic

Poisson (or, with minor adjustments, multinomial) likelihood

models used by the various probabilistic extensions to KL-

NMF, allowing for more principled and effective Bayesian

inference in these models.

6. REFERENCES

[1] D.D. Lee and H.S. Seung, “Algorithms for non-negative

matrix factorization,” in Advances in Neural Informa-
tion Processing Systems 13 (NIPS), 2001, pp. 556–562.

[2] P. Smaragdis and J.C. Brown, “Non-negative matrix fac-

torization for polyphonic music transcription,” in IEEE
Workshop on Applications of Signal Processing to Audio
and Acoustics, 2003, pp. 177–180.

[3] P. Smaragdis, B. Raj, and M. Shashanka, “Sparse

and shift-invariant feature extraction from non-negative

data,” in Acoustics, Speech and Signal Processing,
2008. ICASSP 2008. IEEE Int’l Conf. on, 2008, pp.

2069–2072.

[4] T. Virtanen, A.T. Cemgil, and S. Godsill, “Bayesian

extensions to non-negative matrix factorisation for audio

signal modelling,” in Proc. IEEE Conf. on Acoustics,
Speech and Signal Processing, 2008, 2008, pp. 1825–

1828.

[5] A. Cemgil, “Bayesian inference for nonnegative matrix

factorisation models,” Computational Intelligence and
Neuroscience, vol. 2009, pp. 4:1–4:17, January 2009.

[6] M.D. Hoffman, D.M. Blei, and P.R. Cook, “Finding

latent sources in recorded music with a shift-invariant

HDP,” in Proc. Digital Audio Effects (DAFx-09), 2009.

[7] K. Yoshii and M. Goto, “A nonparametric Bayesian

multipitch analyzer based on infinite latent harmonic al-

location,” Audio, Speech, and Language Processing,
IEEE Transactions on, vol. PP, no. 99, pp. 1, 2011.

[8] A. Gelman, J. Carlin, H. Stern, and D. Rubin, Bayesian
Data Analysis, CRC press, 2004.

[9] M. Jordan, Z. Ghahramani, T. Jaakkola, and L. Saul,

“Introduction to variational methods for graphical mod-

els,” Machine Learning, vol. 37, pp. 183–233, 1999.

[10] C. Févotte, R. Gribonval, and E. Vincent, “Bss eval tool-

box user guide,” IRISA, Rennes, France, Tech. Rep, vol.

1706, 2005.

5364


