
UNSUPERVISED MUSIC UNDERSTANDING
BASED ON NONPARAMETRIC BAYESIAN MODELS

Kazuyoshi Yoshii Masataka Goto

National Institute of Advanced Industrial Science and Technology (AIST)
{k.yoshii, m.goto}@aist.go.jp

ABSTRACT
This paper presents a new research framework for unsupervised mu-
sic understanding. Our goal is to recognize musical notes from poly-
phonic audio signals and simultaneously induce grammatical pat-
terns from the recognized notes by integrating probabilistic acoustic
and language models. Given music audio signals, both models could
be jointly trained in a self-organizing manner without manually spec-
ifying the numbers of musical notes and grammatical patterns. In
this paper, we introduce our nonparametric Bayesian acoustic and
language models for multipitch analysis and chord progression anal-
ysis and discuss issues for integrating these models. We then provide
a novel overview of various acoustic and language models whose un-
derlying concepts are useful for implementing the framework.

Index Terms— Unsupervised music understanding, Bayesian
nonparametrics, statistical machine learning, acoustic and language
models, music transcription, grammar induction

1. INTRODUCTION

Music is one of the most sophisticated forms of audio signals. Even
musically-untrained people can enjoy music and intuitively perceive
that musical notes are organized to form sequential and simultane-
ous structures. Even if they have not been taught labels like C major
and D minor, they intuitively know that only particular note combi-
nations can sound harmonically (form chords). We assume that this
musical sense can be acquired by just listening to a large amount
of music, i.e., that people are capable of unsupervised music under-
standing. This capability is the basis of the analytical music listening
that makes it easy for us to distinguish individual musical notes in
familiar musical pieces. More specifically, humans intuitively grasp
typical structural patterns that commonly appear in musical pieces
they have listened to, and they use those patterns as grammatical
clues for distinguishing overlapped notes. The recognized notes are
in turn used in the deeper discovery of structural patterns.

In the light of the above discussion we propose a novel machine-
learning framework for unsupervised music understanding (Fig. 1).
We aim to recognize musical notes from polyphonic audio signals
and simultaneously induce structural patterns from the recognized
notes in an unsupervised manner. So far, converting continuous data
(audio signals) into discrete data (musical notes) has been actively
investigated, but pure audio-note modeling is insufficient as “music”
signal processing because it does not consider grammatical patterns
of musical notes (e.g. chords). We assume that what makes music
“music” lies in the discrete world because most music can be denoted
in symbolic representations (music scores). Inter-note modeling is
thus indispensable for music understanding.

Our hierarchical framework is similar to the typical framework
of automatic speech recognition (ASR), in which speech signals are
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Fig. 1. A hierarchical Bayesian framework for unsupervised music
understanding based on integration of acoustic and language models.

transcribed into words (sequences of phonemes) by using an acous-
tic model that represents the spectral dynamics of speech signals and
a language model that represents the connections between words.
Such audio-phoneme modeling and inter-phoneme modeling are per-
formed under the condition that all fixed vocabularies of linguistic
units (e.g., phonemes and words) are explicitly given as an oracle.
A key difference of “unsupervised” music understanding is that an
adequate number of discrete “musical units” (e.g., notes and chords)
should be inferred from continuous music audio signals without us-
ing any ground-truth vocabularies. This is analogous to language ac-
quisition by infants, who are capable of discovering linguistic units
in continuous speech signals in an unsupervised manner.

A principled approach to unsupervised music understanding is to
formulate probabilistic acoustic and language models independently
and then integrate them in a hierarchical Bayesian manner. A major
difficulty in the recognition of musical notes is that the number of
musical notes contained in audio signals is unknown. Therefore, the
complexity of the acoustic model should be appropriately adjusted.
In the induction of structural patterns, the complexity of the language
model should also be adjusted according to the structural regularity
of recognized notes. Conventional Bayesian models, however, force
us to specify these complexities in advance even though the combi-
natorial search for optimal complexities is impractically expensive.
Nonparametric Bayesian models, on the other hand, are free from
this problem because they can not only learn their parameters (how
likely each note or chord is to be used) but also efficiently adjust their
own effective complexities (how many notes and chords should be
considered) [1]. Such “musical units” can be generated unboundedly
if they are needed to explain the given music data.

The remainder of this paper is organized as follows: Section 2
explains the probabilistic framework of unsupervised music under-
standing. Section 3 and Section 4 provide a novel overview of vari-
ous acoustic and language models that could be used as components
of the framework. Section 5 concludes the paper.
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2. UNSUPERVISED MUSIC UNDERSTANDING

We explain a mathematical formulation of the probabilistic frame-
work for unsupervised music understanding. As shown in Fig. 1,
the three kinds of random variables, X, Z, and S respectively de-
note music audio signals or frequency spectra, musical notes, and
structural patterns of those notes such as chords (note combinations)
and progressions. We propose a fully hierarchical Bayesian model
p(X,Z,S) = p(X|Z)p(Z|S)p(S), where p(X|Z) and p(Z|S)
are called acoustic and language models, respectively, and p(S) is a
prior distribution over structural patterns. In this study p(Z|S)p(S)
is regarded as a language model in a broad sense.

Our goal is to infer latent variables Z and S from observed data
X in an unsupervised manner. For Bayesian inference, we aim to
compute a posterior distribution over Z and S by using Bayes’ rule,
i.e., p(S,Z|X)=p(X,Z,S)/p(X), where a marginal likelihood
(a.k.a. evidence) is given by p(X)=

∫
p(X|Z)p(Z|S)p(S)dZdS.

Although p(X) is analytically intractable in general, we need to use
approximate inference methods such as the variational Bayes (VB)
and Markov-chain Monte Carlo (MCMC). If necessary, we can take
the maximum-a-posteriori (MAP) point estimates of Z and S from
the posterior distribution p(S,Z|X). This data-driven framework
enables us to compare different implementations of acoustic and lan-
guage models in terms of the unified criterion p(X). In addition, we
can adapt this framework to a semi-supervised setting in which the
size of a latent space is fixed and/or the values of latent variables are
partially given as ground-truth definitions (musical knowledge).

One reason that we need nonparametric Bayesian models to im-
plement p(X|Z) and p(Z|S)p(S) is that the space of Z and that
of S are infinite in theory. Note that any additional knowledge (e.g.,
how many musical notes and chords are contained in observed data
X) is not available in the completely unsupervised setting. If an in-
finite amount of X were available, infinitely many kinds of musical
notes and structural patterns would be needed to represent an infi-
nite variety of X . When the amount of X is finite, however, limited
but unknown numbers of notes and patterns need to be considered A
practically-important feature of nonparametric Bayesian models is
that they theoretically have infinite complexity but actually instanti-
ate only the numbers of musical notes and structural patterns neces-
sary to represent X . This enables us to manage such infinite models
on real computers having finite computational power.

3. PROBABILISTIC ACOUSTIC MODELS

The goal of music transcription to convert polyphonic music audio
signals into musical notes, i.e., discrete symbols that have absolute
pitches (C0, C#0, D0, · · · ) and relative durations (whole, half, quar-
ter, · · · ). Conventional acoustic models have been designed only for
estimating fundamental frequencies (F0s) of musical sounds at every
frame [2, 4, 5] or for separating musical sounds [6–11]. Some mod-
els [5] take into account the temporal continuity of frame-level F0s
for detecting onsets and offsets of musical sounds. Note that the F0s
and durations of musical sounds take continuous values represented
by hertz and seconds. This means that it is implicitly assumed that at
a post-processing stage the F0s are discretized by the semitone and
the durations are quantized according to music tempo. This makes it
difficult, however, to directly represent structural patterns (e.g., com-
binations and progressions) of discrete symbols (musical notes) in a
probabilistic and principled manner.

In the framework of unsupervised music understanding, we need
to build a new type of probabilistic acoustic models that can account
for an infinite number of musical notes having infinitely many kinds
of discrete pitches and durations. To represent p(X|Z), i.e., how
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Fig. 2. Mixture modeling of amplitude spectrum.

audio spectra X are stochastically generated from musical notes Z,
several ideas of conventional acoustic models are worth considering.
We explain two major types of acoustic models: mixture models and
factorial models, which can be extended to nonparametric Bayesian
models by taking the infinite limit of standard Bayesian models when
the space of Z to diverges to infinity.

3.1. Mixture Models
As shown in Fig. 2, the mixture modeling approach assumes that an
amplitude spectrum is generated from a weighted sum of probabil-
ity distributions that correspond to individual sounds. This means
that an amplitude spectrum is interpreted as a histogram of “sound
particles” having their own frequencies. If the amplitude value at fre-
quency f is a, we assume that a sound particle of frequency f was
observed �a� times. Here, each particle is assumed to be generated
from one of the component distributions. Although this assumption
does not make physical sense, it is known to be useful in practice.

3.1.1. Infinite Latent Harmonic Allocation
One promising idea is to use a Gaussian mixture model (GMM) as
a component distribution. More specifically, a harmonic structure
consisting of M harmonic partials is explicitly represented by bind-
ing component Gaussians to the frequencies of those partials. An
amplitude spectrum consisting of K harmonic sounds is represented
as a mixture of GMMs. An underlying assumption is that each sound
particle is stochastically generated from one of KM Gaussians, i.e.,
one of M partials contained in one of K sounds. This idea is used
by multi-F0 analyzers called PreFEst [4] and HTC [5], in which the
values of K and M are assumed to be given in advance. The state-of-
the-art analyzer called infinite latent harmonic allocation (iLHA) [2]
is a nonparametric Bayesian version of PreFEst, in which the values
of K and M are considered to be infinite in theory.

We explain a mathematical formulation of iLHA. Let D be the
number of frames and regard the observed spectra X as a set of fre-
quencies observed over those frames, i.e., X = {X1, · · · ,XD}.
Xd = {xd1, · · · , xdNd} is a set of frequencies observed at frame
d, where Nd is the number of sound particles at that frame. Note
that the value of xdn is represented on a logarithmic scale [cents].
Let Z = {Z1, · · · ,ZD} and Zd = {zd1, · · · ,zdNd} be the corre-
sponding latent variables, where zdn is a KM -dimensional vector
in which only one entry, zdnkm, takes one and the others take zero
when frequency xdn is generated from partial m (1 ≤ m ≤ M) of
source k (1 ≤ k ≤ K). Therefore, the space of Z is defined over K
sounds and M partials. Given Z, the likelihood of X is defined as

p(X|Z,μ,Λ)=
∏

dnkm

N (
xdn

∣∣μk + 1200 log2 m,Λ−1
k

)zdnkm
(1)

where μk is the F0 [cents] of harmonic sound k and Λk indicates a
degree of sharpness of harmonic partials on the logarithmic scale. A
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simple mixture model over Z is then formulated as follows:

p(Z|π, τ ) =
∏

dnkm

(πdkτkm)zdnkm (2)

where πdk is a mixing ratio of sound k at frame d and τkm is a mix-
ing ratio of partial m of sound k. Although this model is mathemati-
cally convenient for pure acoustic modeling, a musically-meaningful
language model over Z should be developed in the future for unsu-
pervised music understanding. To formulate a Bayesian model, we
put conjugate priors over unknown parameters π, τ , μ, and Λ. More
specifically, we use K-dimensional and M -dimensional Dirichlet
priors as p(π)p(τ ) and use Gauss-Gamma priors as p(μ,Λ). Given
the observed data X, the posterior distribution p(Z,π, τ ,μ,Λ|X)
can be computed by using a VB method.

To derive iLHA, we take the limit of p(Z|π, τ )p(π)p(τ ) as K
and M approach infinity. πd contains an infinite number of mixing
ratios {πd1, · · · , πd∞} that still sum to unity. p(πd) is an infinite-
dimensional Dirichlet distribution, which is known to be equivalent
to a Dirichlet process (DP). A recursive generative process of πd is
known as the stick-breaking process, where the values of πd tend to
decrease exponentially. Since in practice most values are too small, a
limited number of harmonic sounds can appear in the observed data
X . A similar discussion can be applied to τ .

Alternatively, we can consider a marginal likelihood given by
p(Z)=

∫
(Z|π, τ )p(π)p(τ )dπdτ , in which we do not need to di-

rectly deal with infinite-dimensional parameters π and τ . Although
the space of Z is infinite in theory, limited kinds of harmonic sounds
and partials appear in the finite data X . A recursive generative pro-
cess of Z is known as the Chinese restaurant process (CRP).

In our experiments using eight piano pieces of jazz and classical
music [2], the frame-level accuracy of F0 estimation was 80.9%. The
accuracy of PreFEst, on the other hand, was 78.5% even though the
Dirichlet hyperparameters were carefully tuned. However, a limita-
tion of iLHA is that the number of active sources (effective K) tends
to be overestimated because the GMM is an oversimplified model of
real harmonic sounds that contain not only harmonic partials but also
noise components. This could be overcome by fusing iLHA with a
language model to suppress unlikely note combinations.

3.1.2. Infinite Probabilistic Latent Component Analysis
Another promising idea is to use a two-dimensional discrete distribu-
tion on the time-frequency plane as a component distribution, which
is factorized as the product of a discrete distribution over frequency
bins and a discrete distribution over frames. These two distributions
respectively correspond to the spectral shape and temporal activation
of a sound source. This idea is known as probabilistic latent compo-
nent analysis (PLCA) [6] and is useful for blind source separation. A
nonparametric Bayesian variant [7] was recently proposed by letting
the number of sound sources, K, diverge to infinity.

Here we explain a mathematical formulation of PLCA. Let D
and F respectively be the numbers of frames and frequency bins.
The observed spectra X can be regarded as a set of frame-bin pairs
of sound particles contained in the spectra, i.e., X={x1, · · · ,xN},
where N is the total number of particles. xn is a DF -dimensional
vector in which only one entry, xndf , takes one and the others take
zero when the frame and frequency bin of the particle are equal to d
and f . Let Z={z1, · · · , zN} be the corresponding latent variables,
where zn is a K-dimensional vector in which only one entry, znk ,
takes one and the others take zero when xn is generated from source
k (1 ≤ k ≤ K). Therefore, the space of Z is defined over K sound
sources. Given Z, the likelihood of X is defined as

p(X|Z, ξ,η) =
∏

nkdf

(ξkdηkf )
znkxndf (3)
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Fig. 3. Factorial modeling of amplitude spectrum.

where ξkd is the probability that a sound particle of source k is gen-
erated from frame d and ηkf is the probability that a sound particle
of source k is generated from frequency bin f . A simple mixture
model over Z is then formulated as follows:

p(Z|ω) =
∏

nk

ωznk
k (4)

where ωk is a mixing ratio of sound k. Bayesian PLCA is easily for-
mulated by using Dirichlet priors as p(ξ)p(η)p(ω). Nonparametric
Bayesian treatment is also straightforward because p(ω) is equiva-
lent to a DP when the value of K approaches infinity.

3.2. Factorial models
As shown in Fig. 3, the factorial modeling approach assumes that an
amplitude spectrum is approximated by a weighted sum of multivari-
ate random variables that correspond to individual sounds. Nonneg-
ative matrix factorization (NMF) [8] has been widely used among
various factorial models such as principal component analysis (PCA)
and independent component analysis (ICA). NMF regards a time-
frequency spectrogram as a nonnegative matrix that can be factorized
into the product of two nonnegative matrices, i.e., a set of spectral
bases and a set of temporal activations.

Several nonparametric Bayesian models of NMF have been for-
mulated by letting the number of spectral bases diverge to infinity.
Hoffman et al. [9] proposed the GaP-NMF, which is an infinite ex-
tension of the Itakura-Saito divergence NMF [10]. Nakano et al. [11]
formulated another GaP-NMF based on the Kullback-Leibler diver-
gence NMF [8] and further extended it to allow each spectral basis
to temporally vary according to an infinite hidden Markov model.

4. PROBABILISTIC LANGUAGE MODELS

The goal of grammar induction is to discover structural patterns S
from musical notes Z for evaluating the structural appropriateness
of those notes in terms of the likelihood p(Z|S). Conventionally,
we are required to define as S a fixed and finite vocabulary of struc-
tural patterns such as chord types (what note combinations should be
considered) and chord progressions (how many consecutive chords
should be considered). However, appropriate definitions heavily de-
pend on the structural complexity of target music data.

To solve this problem, we need to build nonparametric Bayesian
models by using a prior p(S) over an infinite number of structural
patterns. We explain two types of language models: chain-structured
models and tree-structured models, which can be extended to non-
parametric Bayesian models when the space of S diverges to infinity.

4.1. Chain-structured Models
As shown in Fig. 4, the chain-structured modeling approach assumes
that musical notes or chords vary according to Markovian dynamics.
In standard chord progression analysis, n-gram models have been
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eling for chord sequences

used for representing sequences of conventional chord labels (e.g.,
C major and D minor) by assuming each chord to depend on a con-
text consisting of n−1 preceding chords [12]. This idea was taken
from the field of computational linguistics (CL), in which n-gram
models are often used for representing sequences of words. For ex-
ample, Teh [13] proposed a hierarchical Pitman-Yor language model
(HPYLM) as the first generative model of n-grams. Mochihachi and
Sumita [14] proposed a variable-order Pitman-Yor language model
(VPYLM or infinity-gram model) that allows each word (chord) to
depend on an unbounded and variate number of preceding words, as
shown in Fig. 5. However, the space of S is finite because a vocab-
ulary of words (chord labels) are assumed to be specified.

We introduce a vocabulary-free infinity-gram model p(Z|S) [3]
for sequences of simultaneous musical notes Z. This model is an ex-
tended version of the VPYLM and does not force us to specify the
value of n and define a limited vocabulary of chord labels. The space
of S is defined over infinitely many kinds of note combinations. A
key building block is the Pitman-Yor process (PY), which is a prior
distribution over distributions. Let d and θ be positive scalars and
G0 be any distribution. The PY is represented as G∼PY(d, θ, G0),
where d and θ are discount and strength parameters and G is a ran-
dom distribution. The larger the value of θ is, the more likely it is
that G is similar to G0. Our n-gram model is obtained by layering
PYs in a hierarchical Bayesian manner. Suppose we have an n-gram
distribution Gu over S, where u is a context of length n − 1. An
n−1-gram distribution Gu∗ given the shortened context u∗ is some-
what similar to Gu. Here Gu is assumed to be drawn from a PY as
Gu∼PY(dn, θn, Gu∗), where dn and θn are parameters specific to
n. Such a process is defined recursively. Finally, the unigram distri-
bution Gφ is given by Gφ ∼ PY(d0, θ0, G0), where G0 is a global
base measure (0-gram distribution) over S. An important feature of
our model is that G0 itself is represented as a generative model p(S)
that evaluates how likely musical notes are to occur simultaneously.

In our comparative experiments using Beatles songs [3], the per-
plexity obtained with our model was 14.6, which was significantly
better than that obtained with the VPYLM (15.8).

4.2. Tree-structured Models
As shown in Fig. 6, the tree-structured modeling approach assumes
that a temporal sequence of musical notes can be hierarchically clus-
tered according to reduction patterns S. This concept is influenced
by the Schenkerian theory. Hamanaka et al. [15] proposed a com-
putational model for the generative theory of tonal music (GTTM),

which is originated from the Schenkerian theory, where the conflicts
between multiple reduction patterns are solved in an ad-hoc manner.
Gilbert and Conklin [16] used a probabilistic context-free grammar
(PCFG) for inferring a reduction tree from a melody line by regard-
ing musical notes as words. Kirlin and Jensen [17] proposed a simi-
lar tree model for Schenkerian analysis. In the field of CL, Liang et
al. [18] proposed a nonparametric Bayesian PCFG that can instan-
tiate an unbounded number of reduction patterns as needed. This is
highly promising for inducing a music grammar p(S) itself.

5. CONCLUSION

This paper presented a hierarchical Bayesian framework for unsuper-
vised music understanding. Our ultimate goal is to estimate musical
notes from music audio signals and simultaneously induce structural
patterns from the transcribed notes in an unsupervised way. In initial
steps, we proposed state-of-the-art nonparametric Bayesian acoustic
and language models. Future work includes fusing these models into
a unified model. We consider exact Bayesian inference to be compu-
tationally tractable by alternately optimizing acoustic and language
models with the Gibbs sampling method. In addition, to train a data-
driven language model of music, our framework is expected to make
use of a huge amount of music audio signals on the web even though
those signals are not given any ground-truth transcriptions.
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