
SCALABLE COMPLEX GRAPH ANALYSIS WITH THE KNOWLEDGE DISCOVERY
TOOLBOX

Adam Lugowski† Aydın Buluç� John R. Gilbert† Steve Reinhardt‡

� Lawrence Berkeley National Laboratory
†University of California, Santa Barbara

‡Microsoft Corporation

ABSTRACT
The Knowledge Discovery Toolbox (KDT) enables domain

experts to perform complex analyses of huge datasets on su-

percomputers using a high-level language without grappling

with the difficulties of writing parallel code, calling parallel

libraries, or becoming a graph expert. KDT delivers competi-

tive performance from a general-purpose, reusable library for

graphs on the order of 10 billion edges and greater. We de-

scribe our approach for supporting arbirary vertex and edge

attributes, in-place graph filtering, and graph traversal using

pre-defined access patterns.

Index Terms— graph analytics, scalability, knowledge

discovery, semantic graph, filter

1. INTRODUCTION

Analysis of very large graphs has become indispensable in

fields ranging from genomics and biomedicine to financial

services, marketing, and national security, among others. Our

Knowledge Discovery Toolbox (KDT) [1] is the first pack-

age that combines ease of use for these domain experts, scal-

ability on supercomputers (large HPC clusters) where many

domain scientists run their large scale experiments, and ex-

tensibility for graph algorithm developers. KDT addresses

the needs both of graph analytics users (who are not expert

in algorithms or high-performance computing) and of graph

analytics researchers (who are developing algorithms and/or

tools for graph analysis). KDT is an open-source, flexible,

reusable infrastructure that implements a set of key graph op-

erations with excellent performance on standard computing

hardware.

KDT specifically targets those who are not experts in

graph analytics. We believe allowing domain experts to di-

rectly explore graphs is necessary for discovery. Our goal is

to build a package that a) is conceptually simple enough for

domain experts to use, b) is customizable enough to solve

their graph problems, and c) performs well enough to exe-

cute their graph problems in acceptable time and memory.

With the authors’ background in distributed-memory com-

binatorial supercomputing, we chose to start from a known

performance base (Combinatorial BLAS [2]) and address the

dimensions of conceptual simplicity (for domain experts) and

customizability. It is unknown whether an implementation

can be realized that meets all three requirements.

This paper describes new features of KDT that support

graphs with attributes on both edges and vertices, so-called

semantic graphs, and how those changes meet the criteria of

customizability and performance.

(a) all communications

(b) only text messages (c) only phone calls

Fig. 1. Example of placing a filter on a graph. We compute

betweenness centrality on a graph of communications con-

sisting of both text messages and cell phone calls, then filter

to only text messages or cell phone calls. A vertex’s size indi-

cates its normalized centrality score. Each filtered graph high-

lights different central nodes, leading to better understanding

of communication patterns.

2. SEMANTIC GRAPH EXAMPLE

Consider the example of a social network where informa-

tion is known about cell-phone calls and text messages. To

understand the patterns of communication in the social net-

work, an analyst may want to explore the graph by looking at

5345978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

the variable bigG contains the graph
define the edge selection filter
def eFilter(self):

return self.eType == eType

for each edge type, calculate
betweenness centrality
mList=(PhoneCall,TextMessage)
bigG.addEFilter(eFilter)
for eType in mList:

bc = bigG.rank(’approxBC’)
#visualize vertex centrality in graph composed of edges

of only a single type

bigG.delEFilter(eFilter)
bc = bigG.rank(’approxBC’)
#visualize vertex centrality based on all edges

Fig. 2. KDT code implementing the semantic-graph exam-

ple described in Section 2. All filtering is done dynamically

without creating any intermediaries.

each mode of communication separately, with any of the al-

gorithms supported in KDT. For example, betweenness cen-

trality [3] often gives insight into those people (vertices) who

most connect the whole graph. Calculating betweenness cen-

trality considering only phone calls, and then only text mes-

sages may give deeper insight than calculating betweenness

centrality considering both communication modes simultane-

ously. Note that the latter is not simply a linear combination

of the former two. Figure 1 provides an illustration. This can

be implemented in KDT v0.2 with the code in Figure 2.

An important aspect of this example is that the filtered

graphs (i.e. the graph of only text messages) are never ma-

terialized. The predicates used to filter the edges are applied

on-the-fly, thus eliminating the need to create intermediaries.

The edge filter predicate eFilter is attached to the graph

by the addEFilter method, and then executed whenever

edge traversing operations are invoked.

This example has analogues in life sciences, where the

different edges might be protein-protein or protein-DNA in-

teractions.

3. KDT DESIGN

We build on our previous work on the Combinatorial BLAS

(or CombBLAS for short) [2] by utilizing it as our initial

backend. The CombBLAS is a proposed standard for combi-

natorial computational kernels. It is a highly-templated C++

library. It offers a small set of linear algebraic kernels that

can be used as building blocks for the most common graph-

analytic algorithms. Graph abstractions can be built on top

Fig. 3. A high-level comparison of advances in CombBLAS

and KDT. Our current semantic graph implementation has

high simplicity and customizability. Our target is to build on

that by adding the performance of our current non-semantic

graphs.

of its sparse matrices, taking advantage of its existing best

practices for handling parallelism in sparse linear algebra.

Its flexibility comes from the arbitrary operations that it sup-

ports. The user, or in this case the KDT implementor, spec-

ifies the add and multiply routines in matrix-matrix and

matrix-vector operations, or unary and binary functions for

element-wise operations. The main data structures are dis-

tributed sparse matrices and vectors, which are distributed in

a two-dimensional processor grid for scalability.

KDT transforms the linear algebra primitives into graph

primitives. The graph’s edges are collectively stored in a ma-

trix, and vertex attributes are stored in a vector. Sparse matrix-

vector multiplication (SpMV) and sparse matrix-matrix mul-

tiplication (SpGEMM) become KDT’s graph traversal prim-

itives, where user code in the add and multiply semir-

ing routines defines the function of the traversal. Element-

wise operations become edge and vertex visitors. The main

benefit of this approach is that traditional graph frameworks

are latency-bound whereas linear algebra primitives are band-

width bound. The latter is far more scalable.

Our first KDT release focused on providing key abstrac-

tions on data structures and algorithms (e.g. digraphs, rank,

cluster) and the supporting infrastructure (vectors, matri-

ces, Python bindings). Our goal was to be able to deliver

our world-class CombBLAS performance with conceptual

simplicity and user-friendly design. We did not focus on

extending the graph abstractions; instead we supported only

floating-point attributes on both vertices and edges.

The progression of capabilities of CombBLAS and KDT

is illustrated in Figure 3.

5346

4. CUSTOMIZABILITY: SUPPORTING
ATTRIBUTES FOR VERTICES AND EDGES

4.1. Datatypes

The primary feedback we received from potential KDT users

on our initial release was the need to support semantic graphs,

i.e., graphs whose edges and vertices have attributes on them.

The needed support consisted of two primary changes to

KDT: the ability to create graphs with edge objects more

complex than the single 64-bit data element of our first re-

lease (and similarly vectors with vertex objects more complex

than the 64-bit element), and the ability to customize KDT

operations to filter or compute on elements of the edge and

vertex objects. These changes must be made balanced with

the conceptual simplicity and performance requirements.

Our filter design relies on three basic principles.

1. A user-defined predicate determines whether or not a

vertex or edge exists in the filtered graph

2. Multiple user-defined predicates can be stacked and the

filters they define are applied in the order they are added

to the graph. Thus, both users and algorithm developers

can use filters.

3. All graph operations respect the filter. This ensures

that algorithms can be written without taking filters into

consideration at all, thus greatly easing their design.

Two performance issues constrain the semantic-graph de-

sign in KDT. First, KDT is targeted at complex graph analyt-

ics, which usually traverse the graph more than simple analyt-

ics. These traversals are time-consuming, so to avoid a catas-

trophic performance decrease when using semantic graphs in

KDT, the semantic-graph mechanisms must support computa-

tions that require only minimally (and ideally no) more passes

over the graph than the non-semantic case. Second, because

of the traversal-intensive nature of complex graph analytics

and the fact that in-memory operation is typically much faster

than on-disk operation, frugal memory use will enable much

larger problems to be solved. Specifically, when a user filters

a graph to operate on only certain types of edges or vertices,

avoiding the materialization of the intermediate graph will

typically be a large saving in memory consumption. KDT’s

semantic-graph mechanisms strive to achieve this.

Given that KDT interfaces are via Python, a natural tar-

get for customizable data structures would be a fully general

Python object. Unfortunately, Python objects are so general

that even their size might not remain constant during their life-

time. KDT’s dependence on the Combinatorial BLAS, a C++

package, requires a set of statically-typed and statically-sized

objects known at compile time, which does not lend itself to

straightforward support of general run-time definable Python

objects. In practice, less-general structures targeted at se-

mantic graphs provide the support needed for many semantic-

graph problems; e.g., STINGER [4] has been proposed as a

common graph data structure.

We are continually relaxing our requirements for what an

attribute can be. Our original implementation used simple 64-

bit floating point scalar values as the only supported attribute

types.

Currently we provide two statically-defined object types,

Obj1 and Obj2, which are motivated by STINGER. Unlike

STINGER, however, our users may modify the object types,

albeit in C++ at KDT compile time. Each object type, as well

as scalars, can be used for either edge or vertex attributes.

With this data-structure flexibility comes some additional user

responsibility in defining how the elements of the objects are

used, i.e., how the load function will fill the members of the

object from data values in an input file, overload operators if

desired, etc.

We plan to eventually support arbitrary object types de-

fined by the user in Python. These objects would be subject

to the restriction that they do not change structure (size or

makeup) during execution and that all elements of a matrix

or vector (i.e. any particular graph) must have all attributes

of the same type. These restrictions allow us to keep our

high-performance communication methods, and are common

in high-performance Python packages.

4.2. Computation

Computations on the edge and vertex objects consist of three

types: semirings that perform the elemental calculation that

occurs at each position of a dot product corresponding to a

single step in a graph traversal (such as + or min), element-
wise functions that define the behavior of elemental opera-

tions on edges or vertices, and filter predicates that return a

Boolean True value for each vertex or edge to be retained in

the computation.

KDT’s breadth-first search function is an illustrative ex-

ample. For a graph with no attributes, at each step the fringe
vertices that were newly encountered on the previous step

have their out-edges examined. If a previously unvisited ver-

tex is encountered, the source vertex of the edge to the new

vertex is remembered as the parent (in case of multiple edges

from fringe vertices to the new vertex, the highest-numbered

source vertex is remembered).

The semiring multiply operation visits an edge; the add

operation consolidates multiple edges coming into a single

vertex (using a max operation in our example). Element-wise

operations are used to determine if a vertex is newly discov-

ered, for updates to the parents, and for pruning the frontier

of discovered vertices.

Applying a filter to either the edges or vertices effectively

removes the filtered elements from the graph. For example,

a user may want to calculate a time-dependent path operation

for just CellPhone edges, and the time-dependent operation

itself may filter edges based on their start times. A detailed

5347

explanation of how our filtering system works follows in Sec-

tion 4.3.

4.3. In-place graph filtering

In addition to the three filter principles listed in Section 4.1,

we take the step of implementing filters at a high level. Our

backend can thus be designed without explicit support for fil-

tering, greatly simplifying its implementation. Our backend

supports operations that fall into three basic categories. We

have element-wise operations of the form ei = f(ei), oper-

ations to select elements based on a predicate (eg. Count),

and semiring operations (SpMV, SpGEMM). Each operation

lends itself to supporting filters without altering its basic im-

plementation.

The element-wise operations can be filtered by introduc-

ing a shim function s(x) which traverses the filter predicate

stack and determines if the element x is kept or not. If not,

s(x) returns x and the result is a no-op. If x passes the filter

then the user’s operation called and s(x) returns f(x).

A similar shim is used for the predicate operations. The

filter stack essentially adds additional logical AND terms to

the predicate.

SpMV and SpGEMM operations using semirings are both

filtered in the multiply step. If either element is filtered out

then the multiply becomes a no-op, as if it didn’t happen at all.

The SpGEMM case can again be implemented with a simple

shim in the multiply operation. The SpMV case is more com-

plex because of the semantics of the vector’s filter. A filter on

the vector means that vertices of the graph are filtered. If a

vertex is filtered out then all edges incident to it must also be

filtered out. In the SpMV data pattern, the multiply operation

only has the values of vertices at the tails of the edges, but not

the heads. A naı̈ve application of the vertex filter would not

filter out edges whose heads are incident to a vertex which is

filtered out. A solution is to turn the vertex filter into an edge

filter by adding a boolean flag to each edge. The vertex filter

is applied once to the vector, and its result is broadcast along

the rows and columns of the matrix. The SpMV’s multiply

operation can now filter on just an edge filter.

5. PERFORMANCE

A key performance aspect is the ability to run user code effi-

ciently in the most inner loops of the framework. The ideal

solution is to efficiently execute code written by the user in

the high level language (Python). This, however, introduces

the performance penalty of calling into an interpreter for ev-

ery operation.

An alternative solution is to pre-define a set of compos-

able primitives which are implemented in the fast low-level

language but exposed in the high level one. The user then

composes their operation from these primitives. We found

this approach to provide near hard-coded speed and approx-

imately 80X performance benefits over calling Python code

because the callback into the interpreter is eliminated. The

price is reduced ease of use.

A superior approach is to run code written in Python at

C speeds. This is the goal of SEJITS [5], which provides a

translation and compilation framework for Python which au-

tomatically accelerates repeated operations. It translates the

operation to C++, compiles it, then calls the native code in-

stead of the original Python code. The heavy-lifting task of

optimization is left to the C++ compiler so the SEJITS frame-

work itself is very lightweight. In current work we are explor-

ing the use of SEJITS to accelerate KDT.

6. CONCLUSION

We have introduced KDT, an easy to use, high performance

graph computation library. We demonstrated KDT’s increas-

ing flexibility in the types of graphs it can represent and op-

erations it supports. Namely we described arbitrary attributes

on vertices and edges, and custom user-defined operations for

writing graph algorithms using high-performance patterns.

We also introduced the ability to filter graphs in-place without

incurring additional storage requirements. We also showed

that despite their customizability and user-friendliness, these

operations can still be efficiently performed.

7. REFERENCES

[1] A. Lugowski, D. Alber, A. Buluç, J.R. Gilbert, S. Rein-

hardt, Yun Teng, and Andrew Waranis, “A flexible

open-source toolbox for scalable complex graph analy-

sis,” in SIAM Conference on Data Mining (SDM), 2012

(accepted).

[2] A. Buluç and J.R. Gilbert, “The Combinatorial BLAS:

Design, Implementation, and Applications,” The Inter-
national Journal of High Performance Computing Appli-
cations, vol. online first, 2011.

[3] L.C. Freeman, “A Set of Measures of Centrality Based

on Betweenness,” Sociometry, vol. 40, no. 1, pp. 35–41,

1977.

[4] D.A. Bader, J. Berry, A. Amos-Binks, D. Chavarrı́a-

Miranda, C. Hastings, K. Madduri, and S.C. Poulos,

“STINGER: Spatio-Temporal Interaction Networks and

Graphs (STING) extensible representation,” Georgia In-
stitute of Technology, Tech. Rep, 2009.

[5] B. Catanzaro, S.A. Kamil, Y. Lee, K. Asanović, J. Dem-

mel, K. Keutzer, J. Shalf, K.A. Yelick, and A. Fox,

“SEJITS: Getting Productivity and Performance With

Selective Embedded JIT Specialization,” Tech. Rep.

UCB/EECS-2010-23, EECS Department, University of

California, Berkeley, Mar 2010.

5348

