
PEGASUS: MINING BILLION-SCALE GRAPHS IN THE CLOUD

U Kang, Duen Horng “Polo” Chau, and Christos Faloutsos

School of Computer Science, Carnegie Mellon University

ABSTRACT
We have entered in an era of big data. Graphs are now

measured in terabytes or even petabytes; analyzing them has

become increasingly challenging. How do we find patterns

and anomalies in these graphs that no longer fit in memory?

How should we exploit parallel computation to boost our

analysis capabilities? We present PEGASUS, the first open-

source, peta-scale graph mining library, for the HADOOP

platform (open-source implementation of MAPREDUCE).

By observing that many graph mining operations can be

described by repeated matrix-vector multiplications, we de-

vised an important primitive called GIM-V for PEGASUS that

applies to all such operations. GIM-V (Generalized Iterative

Matrix-Vector multiplication) is highly optimized, achieving

(1) good scale-up with the number of machines, (2) linear run

time on the number of edges, and (3) more than 9 times faster

performance over the non-optimized version. We ran exper-

iments for PEGASUS on M45, one of the largest HADOOP

clusters in the world. We report our findings on several real

graphs with billions of nodes and edges. Selected findings

include (a) the discovery of adult advertisers in the who-

follows-whom on Twitter, and (b) the 7-degrees of separation

in the Web graph.

Index Terms— PEGASUS, graph mining, HADOOP

1. INTRODUCTION

Graphs are ubiquitous: computer networks, social networks,

mobile call networks, and the World Wide Web, to name a

few. Spurred by the lower cost of storage, the success of so-

cial networking websites and Web 2.0 applications, and the

high availability of data sources, graph data are being gener-

ated at unprecedented size. They are now measured in ter-

abytes or even petabytes, with billions of nodes and edges.

Historically, however, most graph mining algorithms were

Research was sponsored by the Defense Threat Reduction Agency un-

der contract No. HDTRA1-10-1-0120, and by the Army Research Labora-

tory under Cooperative Agreement Number W911NF-09-2-0053. This work

is also partially supported by an IBM Faculty Award, a Google Focused Re-

search Award, and a Yahoo Research Alliance Gift. The views and conclu-

sions contained in this document are those of the authors and should not be in-

terpreted as representing the official policies, either expressed or implied, of

the Army Research Laboratory, the U.S. Government, or other funding par-

ties. The U.S. Government is authorized to reproduce and distribute reprints

for Government purposes notwithstanding any copyright notation here on.

designed under the assumption that the graphs would fit in

the main memory of a workstation, or a single disk at its

largest. The above graphs violate these assumptions. They

require us to confront our long-held assumption, and to re-

design the algorithms so they can work with these new breed

of massive graphs. We surveyed promising frameworks that

supported parallel computation, on which we could develop

such massively-scalable algorithms. We selected HADOOP,

an open-source implementation of MAPREDUCE.

We first address the research question: how to design ef-

ficient MAPREDUCE algorithms which can handle such mas-

sive graphs? There are several challenges. First, can we for-

mulate graph mining algorithms using simple operations that

can be efficiently implemented on MAPREDUCE? Second,

how to store the graphs efficiently to minimize storage space

and to enable fast graph queries?

The second question we investigate: what patterns and

anomalies can we discover in huge, real-world graphs with

billions of nodes and edges? Huge graphs have interest-

ing patterns or regularities, such as those in their connected

components, radii, triangles, etc. Discovering these pat-

terns helps us spot anomalies, a capability useful in a wide

spectrum of applications, such as cyber-security (computer

networks), phone companies (fraud detection), and social

networks (spammer detection).

The rest of the paper is organized as follows. Section 2

presents the related work. Section 3 describes the algorithms

for large graph mining. In Section 4 we present the per-

formance results and our findings in real world, large scale

graphs. We conclude in Section 5.

2. RELATED WORKS

In this section, we review related work on MAPREDUCE,

HADOOP, and large scale graph mining with HADOOP.

MAPREDUCE is a programming framework [1] for pro-

cessing huge amounts of unstructured data in a massively par-

allel way. MAPREDUCE has two major advantages: (a) the

programmer is oblivious of the details of the data distribution,

replication, load balancing etc. and furthermore (b) the pro-

gramming concept is familiar, i.e., the concept of functional

programming. Briefly, the programmer needs to provide two

functions, a map and a reduce. The typical framework is as

follows [2]: (a) the map stage sequentially passes over the in-

5341978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

put files and outputs (key, value) pairs; (b) the shuffling stage

groups of all values by key, and (c) the reduce stage processes

the values with the same key and outputs the final result.

HADOOP is the open source implementation of MAPRE-

DUCE. HADOOP provides the Distributed File System

(HDFS) and PIG, a high level language for data analysis [3].

Large scale graph mining using HADOOP has attracted sig-

nificant interests [4, 5, 6] due to its simplicity, fault tolerance,

and low maintenance costs, compared to graph mining based

on MPI [7] and Bulk Synchronous Parallel model [8].

3. ALGORITHMS FOR LARGE GRAPH MINING

Our proposed PEGASUS package1 comprises large scale

graph mining algorithms which we describe in this section.

For each of the algorithm, we provide the motivating ques-

tions and our answers.

3.1. Structure Analysis

Problem 1 How can we find connected components, diam-
eter, PageRank, and node proximities of very large graphs
quickly? Furthermore, how can we design a general primi-
tive which can be applied to many different algorithms?

We observe that many graph mining algorithms, like con-

nected components, diameter, PageRank, and node proxim-

ities, can be unified via the GIM-V primitive, standing for

Generalized Iterative Matrix-Vector multiplication [9]. In the

GIM-V, we generalize the three internal operations(multiply,

sum, and assign) in the standard matrix-vector multiplications

to define many different algorithms.

Having defined GIM-V, the next question is to design ef-

ficient methods for the generalized matrix-vector multiplica-

tion in MAPREDUCE. Our first main idea is to put together

several nonzero elements into square blocks, and perform the

block-wise matrix-vector multiplication instead of element-

wise multiplication. Our second main idea is to cluster the

graph so that nonzero elements in the adjacency matrix are

closely located, and then compress the nonzero bit strings

of each block by standard compression algorithms like gzip.

This compression greatly saves space, which leads to faster

running time of block-wise matrix-vector multiplication.

3.2. Eigensolver

Problem 2 How can we design a scalable eigensolver? How
can we handle skewed matrix-matrix multiplication where
one matrix is much larger than the other?

Given a billion-scale graph, how can we find near-cliques,

the count of triangles, and related graph properties? All

of them can be found quickly if we have the first several

1available at http://www.cs.cmu.edu/∼pegasus

eigenvalues and eigenvectors of the adjacency matrix of the

graph [10]. Despite their importance, existing eigensolvers do

not scale well. We developed HEIGEN [11], an eigensolver

for billion-scale, sparse symmetric matrices.

A challenge in HEIGEN is to design an efficient method

for skewed matrix-matrix multiplication, where the first ma-

trix is much larger than the second matrix. Our main idea is

to broadcast the smaller matrix to all the mappers, so that the

second matrix can be joined with the elements of the first ma-

trix in the mapper. This greatly reduces the network traffic

and decreases the running time. Experiments show that our

proposed method outperforms naive methods by 76× [11].

3.3. Inference

Problem 3 How to scale-up the inference, or “guilt by as-
sociation” algorithm for very large graphs with billions of
nodes and edges?

Inference in graphs is an important problem, which often

corresponds, intuitively, to “guilt by association” scenarios.

For example, if a person is a drug-abuser, probably his/her

friends are so, too; if a node in a social network is of male

gender, his dates are probably females. The typical way to

handle this is belief propagation [12], and we tackle the scal-

ability issue of the belief propagation.

We observe belief propagation cannot be formulated by a

generalized matrix-vector multiplication on the original adja-

cency matrix and a vector. Instead, we formulate the belief

propagation by a generalized matrix-vector multiplication on

the line graph matrix and the message vector [13]. Our key

contribution is to compute the multiplication without explic-

itly constructing the line graph: instead, we use the original

adjacency matrix to compute the multiplication on the line

graph.

3.4. Storage and Indexing

Problem 4 How to store and index graph edge files so that
graph mining queries can be answered quickly?

We consider targeted graph mining queries whose an-

swers require the access to only parts of the graph. Exam-

ples of targeted queries include k-step in/out-neighbors, and

egonet queries. Our main idea is as follows. In the index-

ing stage, we make rectangular blocks of adjacency matrix,

and store several blocks into grids where each grid corre-

sponds to a square-shaped area in the adjacency matrix. In

the query stage, only relevant grids are selected based on the

queries. Experiments show that this ‘grid selection’ reduces

the running time up to 4× than the naive methods [14].

4. EXPERIMENTS

In this section, we present experimental results including the

performance of our proposed method, and the discoveries on

5342

large, real world graphs. Table 1 lists the graphs used. The

experiments were performed in Yahoo!’s M45 HADOOP clus-

ter, one of the largest HADOOP clusters available to academia

with 480 machines, 1.5 petabyte storage and 3.5 Terabyte

memory in total.

Name Nodes Edges Description

YahooWeb 1,413 M 6,636 M Web links in 2002

Twitter 63 M 1,838 M Who follows whom

in Nov. 2009

Random 177 K 1,977 M Synthetic graphs

Table 1. Order and size of networks.

4.1. Performance

Figure 1 shows the disk space and the running time compar-

isons of GIM-V variants. Note that the ‘Proposed’ method,

which combines the clustering and the compression, provides

up to 43× smaller storage and 9.2× faster running time com-

pared to the ‘Naive’ method which does not have the cluster-

ing and the compression.

(a) File size (b) Running time

Fig. 1. (a) File size comparison after clustering and com-

pression. The Y-axis is in log scale. Note our proposed

method reduces the data size up to 43× smaller than the orig-

inal(‘Naive’). The ‘Random’ graph has better performance

gain than real-world graphs since the density is much higher.

(b) Running time comparison of PageRank queries. Our pro-

posed method outperforms the baseline by 9.2×.

4.2. Discoveries

We report interesting discoveries in large, real-world graphs.

They include the patterns and anomalies in radius plots, con-

nected components, and triangle counting.

4.2.1. Radius Plots

What are the central nodes and outliers in graphs? How
closely are nodes in graphs connected? These questions are

answered by radius plot, which is the distribution of the radius

of nodes. The radius r(v) of node v is the distance between v
and a reachable node farthest away from v. The diameter of

a graph is the maximum radius of nodes. The effective radius

and the effective diameter are defined as the 90% percentile

of the radius and the diameter, respectively [15, 16]. We ana-

lyze the effective diameter and radii of YahooWeb in Figure 2

(a). We have the following observations.

Small Web. The effective diameter of the YahooWeb

graph (year: 2002) is surprisingly small (≈ 7 ∼ 8).

Multi-modality of Web graph. The radius distribution

of the YahooWeb graph has a multi-modal structure, which

is possibly due to a mixture of relatively smaller subgraphs

which got loosely connected recently.

4.2.2. Connected Components

What are the patterns and anomalies in the connected com-
ponents of a Web graph? Figure 2 (b) shows the size dis-

tribution of connected components in YahooWeb graph. We

have the following observation which shows the patterns of

anomalous web pages [9].

Anomalous connected components. Figure 2(b) shows

two outstanding spikes which deviate significantly from the

‘power-law’ like size distributions of small disconnected

components. In the first spike at size 300, more than half of

the components have exactly the same structure and they were

made from a domain selling company where each component

represents a domain to be sold. The spike happened because

the company replicated sites using the same template. In the

second spike at size 1101, more than 80 % of the components

are adult sites disconnected from the giant connected com-

ponent. Again, the adult sites are generated from a template.

To summarize, the distribution plot of connected components

reveals interesting communities with special purposes which

are disconnected from the rest of the Internet.

4.2.3. Triangle Counting

What are the patterns and anomalies in the triangle counts
and the degrees in social network graphs? Figure 2 (c) shows

the degree and the number of participating triangles in the

Twitter ‘who follows whom’ graph at year 2009 [11]. We

have the following observation which can be used to spot and

eliminate harmful accounts such as those of adult advertisers

and spammers.

Anomalous triangles vs. degree ratio. In Figure 2 (c),

celebrities have high degrees and mildly connected followers,

while adult accounts have many fewer, but extremely well

connected, followers. The reason is that adult accounts are

often from the same provider, and they follow each other to

possibly boost their rankings or popularities.

5. CONCLUSION

We presented PEGASUS, a graph mining library for finding

patterns and anomalies in massive, real-world graphs. Our

major contributions include:

• Scalable algorithms for mining billion-scale graphs.

5343

(a) Radius plot of YahooWeb (b) Connected components of YahooWeb (c) Triangle counts in Twitter

Fig. 2. Discoveries in large, real world graphs. (a) Radius plot of the YahooWeb graph. Notice the effective diameter is

surprisingly small. Also notice the multi-modality which is possibly due to a mixture of relatively smaller subgraphs. (b)

Connected components size distribution of the YahooWeb. Notice the two anomalous spikes which deviate significantly from

the constant-slope tail. (c) The degree vs. participating triangles of some ‘celebrities’ in Twitter accounts. Also shown are

accounts of adult sites which have smaller degree, but belong to an abnormally large number of triangles. The reason of the

large number of triangles is that adult accounts are often from the same provider, and they follow each other to form a clique,

to possibly boost their rankings or popularities.

• Performance analysis of our proposed method, which

achieves up to 43× smaller storage and 9.2× faster run-

ning time.

• Discovery of patterns and anomalies of structural pat-

terns in huge, real-world graphs. Some of our most

impressive findings are (a) the discovery of adult ad-

vertisers in the who-follows-whom on Twitter, and (b)

the 7-degrees of separation in the Web graph.

As we are only at the dawn of the era of big data, many

exciting research directions await us. We have begun work-

ing on extending PEGASUS to support massive-scale tensor

analysis and unsupervised anomaly detection.

References

[1] Jeffrey Dean and Sanjay Ghemawat, “MapRe-

duce: Simplified Data Processing on Large Clusters,”

OSDI’04, Dec. 2004.

[2] Ralf Lämmel, “Google’s mapreduce programming

model – revisited,” Science of Computer Programming,

vol. 70, pp. 1–30, 2008.

[3] Christopher Olston, Benjamin Reed, Utkarsh Srivastava,

Ravi Kumar, and Andrew Tomkins, “Pig latin: a not-so-

foreign language for data processing,” in SIGMOD ’08,

2008, pp. 1099–1110.

[4] Spiros Papadimitriou and Jimeng Sun, “Disco: Dis-

tributed co-clustering with map-reduce,” ICDM, 2008.

[5] “Mahout,” http://lucene.apache.org/mahout/.

[6] Amol Ghoting, Rajasekar Krishnamurthy, Edwin

P. D. Pednault, Berthold Reinwald, Vikas Sindhwani,

Shirish Tatikonda, Yuanyuan Tian, and Shivakumar

Vaithyanathan, “Systemml: Declarative machine learn-

ing on mapreduce,” in ICDE, 2011, pp. 231–242.

[7] Aydin Buluç and John R. Gilbert, “The combinatorial

blas: design, implementation, and applications,” IJH-
PCA, vol. 25, no. 4, pp. 496–509, 2011.

[8] Grzegorz Malewicz, Matthew H. Austern, Aart J. C.

Bik, James C. Dehnert, Ilan Horn, Naty Leiser, and

Grzegorz Czajkowski, “Pregel: a system for large-scale

graph processing,” in SIGMOD Conference, 2010, pp.

135–146.

[9] U Kang, C.E Tsourakakis, and C. Faloutsos, “Pegasus:

A peta-scale graph mining system - implementation and

observations,” ICDM, 2009.

[10] Charalampos E. Tsourakakis, U. Kang, Gary L. Miller,

and Christos Faloutsos, “Doulion: counting triangles in

massive graphs with a coin,” in KDD, 2009, pp. 837–

846.

[11] U. Kang, Brendan Meeder, and Christos Faloutsos,

“Spectral analysis for billion-scale graphs: Discoveries

and implementation,” in PAKDD (2), 2011, pp. 13–25.

[12] J. Pearl, “Reverend Bayes on inference engines: A dis-

tributed hierarchical approach,” in Proceedings of the
AAAI National Conference on AI, 1982, pp. 133–136.

[13] U. Kang, Duen Horng Chau, and Christos Faloutsos,

“Mining large graphs: Algorithms, inference, and dis-

coveries,” in ICDE, 2011, pp. 243–254.

[14] U. Kang, Hanghang Tong, Jimeng Sun, Ching-Yung

Lin, and Christos Faloutsos, “Gbase: a scalable and

general graph management system,” in KDD, 2011, pp.

1091–1099.

[15] U. Kang, Charalampos E. Tsourakakis, Ana Paula Ap-

pel, Christos Faloutsos, and Jure Leskovec, “Radius

plots for mining tera-byte scale graphs: Algorithms, pat-

terns, and observations,” in SDM, 2010, pp. 548–558.

[16] U. Kang, Charalampos E. Tsourakakis, Ana Paula Ap-

pel, Christos Faloutsos, and Jure Leskovec, “Hadi: Min-

ing radii of large graphs,” ACM Trans. Knowl. Discov.
Data, vol. 5, pp. 8:1–8:24, February 2011.

5344

