
DISTINGUISHING SIGNAL FROM NOISE IN AN SVD OF SIMULATION DATA

Paul G. Constantine

Stanford University
Mechanical Engineering Department

Stanford, CA

David F. Gleich

Purdue University
Computer Science Department

West Lafayette, IN

ABSTRACT
Our goal is to predict the output of a parameterized computer

simulation code given a database of outputs at different pa-

rameter values. To do so, we investigate a particular model

reduction technique that interpolates the right singular vectors

in the singular value decomposition of the matrix of outputs.

A common observation about these singular vectors is that

they become more oscillatory as the index of the singular

vectors increases. We use this property to split the singular

vectors into “signal” and “noise” regions. The model reduction

then interpolates the “signal” and uses the “noise” to estimate

the uncertainty in the result. This methodology requires a

big-data approach because the simulations we study produce

snapshots with hundreds or thousands of timesteps on thou-

sands to millions of nodal values. Each simulation output is

then a vector with millions to billions of values. We utilize a

MapReduce-based SVD routine to compute the SVD of the

snapshot matrix.

1. INTRODUCTION

Simulation is now an established scientific endeavor, providing

a straightforward and inexpensive proxy for expensive, imprac-

tical, or impossible experiments. As simulation’s prominence

and impact have grown over the past decades, analyzing the

simulation outputs is a new challenge. Each simulation, which

often depends on many input parameters, can take hours, days,

or weeks on large clusters on computers. Parameter studies,

such as uncertainty quantification or sensitivity analysis, are

unrealistic because they require an extremely large number of

separate simulations.

One possible approach to skirt around this issue is to de-

sign a surrogate function for the simulation. The surrogate

function should be inexpensive to evaluate at many parameters.

Then, we can perform a rigorous study of the easy-to-evaluate

surrogate instead of the expensive-to-evaluate simulation. Ide-

ally, the insight suggested by the surrogate can then be checked

with a small number of additional simulation runs.

In order to make this idea more concrete, suppose that

f(s) ∈ R
m is a function representing the output of a simulation

Work from both authors completed at Sandia National Laboratories.

where the input is a vector of input parameters s ∈ R
d. We are

mainly concerned with simulations that can be described as

the solution of a time-dependent partial differential equation.

These methods typically evolve a set of spatially varying values

over in a sequence of discrete timesteps. Let x1, . . . , xn be

the spatial points – each xi could be the coordinates in a three-

dimensional space – and t1, . . . , tk be the sequence of time

values. Thus, f(s) is a space-by-time sized vector describing

the state of each nodal value at each timestep:

f(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q(x1, t1, s)
...

q(xn, t1, s)
q(x1, t2, s)

...

q(xn, t2, s)
...

q(xn, tk, s)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where q(xi, tj , s) is the simulation output at the ith position

and the jth timestep for input s. Suppose we have evaluated

f(s1), . . . , f(sp) and stored the results. This data corresponds

to an m-by-p matrix

X =
[
f(s1) f(s2) . . . f(sp)

]
.

We refer to this matrix as the snapshot matrix. However, it

should be noted that this terminology commonly refers to a

matrix whose rows correspond to the spatial discretization

and columns correspond to temporal sampling for a given pa-

rameter value [1]. In our case, rows of the snapshot matrix

correspond to coordinates in space/time, and columns corre-

spond to sampling the parameter space.

Inspired by the success of other surrogate models, includ-

ing methods based on the proper orthogonal decomposition [2]

and a residual based surrogate model [3], we investigate a

scheme that approximates f as a linear combination of data-

derived basis vectors {uj : j = 1, . . . r}:

f(s) ≈
r∑

j=1

ujαj(s).

5333978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

The major computational element is computing an SVD of the

matrix X once to get the data-derived basis {uj}. Because of

the massive scale of the data involved (thousands to millions

of spatial points and hundreds to thousands of time steps), we

employ a MapReduce architecture for this task. Each evalua-

tion of the surrogate will involve computing the coefficients

αj(s) – which will be quite easy as we’ll see in the next sec-

tion – and multiplying them by the matrix of basis vectors in

another MapReduce computation. We can easily evaluate this

surrogate function for thousands of points simultaneously and

without significant overhead.

2. SVD BASED MODEL REDUCTION

To explain the intuition for our method, consider a bivariate

scalar function g(x, s). Let

X =

⎡
⎢⎢⎢⎢⎣

g(x1, s1) g(x1, s2) · · · g(x1, sp)

g(x2, s1)
. . .

. . .
...

...
. . .

. . . g(xm−1, sp)
g(xm, s1) · · · g(xm, sp−1) g(xm, sp).

⎤
⎥⎥⎥⎥⎦

= UΣVT ,

where the final form is given by the SVD of the matrix X.

(In terms of what was written in the introduction, note that

when
[
g(x1, s) · · · g(xm, s)

]T
= f(s), then we arrive at

the snapshot matrix.) Our idea follows from the decoupling

that arises in a functional interpretation of the SVD:

g(xi, sj) =
r∑

�=1

Ui,�σ�Vj,� =
r∑

�=1

u�(xi)σ�v�(sj),

where r is the rank of the matrix X. For these samples, the

SVD produces a decoupled-sum-of-products expression. Now,

suppose we wish to evaluate g(xi, s) for a value s �= sj . Ide-

ally, we’d have:

g(xi, s) =
r∑

�=1

u�(xi)σ�v�(s).

Put another way, in a perfect world, there would be a known
functional basis v�(s) that would determine our evaluations at

a new point s. Reality isn’t quite so nice, and our idea is to

approximate v�(s) via an interpolation:

v�(s) ≈
p∑

j=1

v�(sj)β
(�)
j (s).

That is, we interpret the right-singular vectors V as samples

from an unknown functional basis {v�(s)} and interpolate

each function v�(s) separately. Hence,

g(xi, s) ≈
r∑

�=1

u�(xi)σ�

p∑
j=1

v�(sj)β
(�)
j (s).

This can be evaluated for all values xi simultaneously:

g(·, s) ≈ UΣ diag(VTB(s)) = Ua(s) =
T∑

�=1

u�α�(s),

where α� = σ�

∑p
j=1 β

(�)
j (s)v�(sj) and Bj,� = β

(�)
j (s). Note

that this is exactly the form we prescribed at the end of the in-

troduction. Because we assume that p, the number of samples,

is small (hundreds), performing the interpolation is a tractable

problem. We can use any linear interpolation scheme – e.g.,

polynomial interpolation, radial basis functions, regression

splines – for this task.

3. DISTINGUISHING SIGNAL FROM NOISE

While performing a linear interpolation is a well-understood

problem, it is not always advisable. Let g(x, s) = −1
8s log

(
1 +

4s(x2 − x)
)
. (See [4] for more about the origin of this func-

tion.) We take xi to be 500 equally spaced points in [0, 1] and

sj to be 10 equally spaced points in [−1, 1]. We have plotted

the resulting singular vectors, interpreted as functions v�(s),
in Figure 1.

Recall that our goal is to interpolate each of these functions

in the parameter s. For a few of these functions, this looks

like a good idea because the functions are relatively smooth

and resolved, by which we mean that any oscillations are

captured by the samples. However as the index � increases, the

functions become more oscillatory and it is not as clear that

we can interpolate such functions. For reference, we also show

(Figure 2) more highly resolved versions of these functions that

result from taking sj as 21 equally spaced points in [−1, 1].
Increased oscillatory behavior in the singular vectors is a

common observation [5, Heuristic 2.1]. Based on this observa-

tion, we develop a simple heuristic to determine the reliability

of an interpolant.

The essential idea is to estimate the gradient of the function

v�(s) with respect to s for � = 1, . . . , r, which we do by

computing the gradient of the interpolant. The increasing

oscillations of the v�(s) implies that the norm of the gradient

‖∂v��/∂s‖ will increase as the index � increases. Let �� be

the first index such that ‖∂v��/∂s‖ is larger than a chosen

threshold. Then we split the bases into two groups: predictable
and unpredictable, where the predictable bases are well-suited

for interpolation at the point s. Specifically, the basis functions

v�(s) with � = 1, . . . , �� are deemed predictable while v�(s)
for � = �� + 1, . . . , r are deemed unpredictable.

In practice, we have found that cumulative summation is a

more stable metric than the norm of the gradient. For a given

threshold γ, we set �� to be the largest τ such that

τ∑
�=1

σ�‖∂v��/∂s‖ < γ,

where σ� are the singular values of the snapshot matrix.

5334

−1 0 1
−1

0

1

v
1

−1 0 1
−1

0

1

v
2

−1 0 1
−1

0

1

v
3

−1 0 1
−1

0

1

v
7

Fig. 1. An example of when the functions v� become diffi-

cult to interpolate. Each plot shows a singular-vector from

the example in Section 3, which we interpret as a function

v�(s). While we might have some confidence in an interpola-

tion of v1(s) and v2(s), interpolating v3(s) for s nearby 1 is

problematic, and interpolating v7(s) anywhere is dubious.

−1 0 1
−1

0

1

v
1

−1 0 1
−1

0

1

v
2

−1 0 1
−0.5

0

0.5

v
3

−1 0 1
−0.5

0

0.5

v
7

Fig. 2. For reference, we show a finer discretization of the

functions above, which shows that interpolating v7(s) nearby

1 is difficult.

Once we have determined the predictable bases, we in-

terpolate them using procedures discussed above to create

the α�(s). From the singular values and left singular vectors

corresponding to the unpredictable bases, we can statistically

characterize the noise in the surrogate function. This statisti-

cal characterization provides a time/space-varying prediction

variance, which is related to the errors in the surrogate.

4. COMPUTING AN SVD WITH MAPREDUCE

Recall that X is m-by-p, where m is the product of the number

of timesteps and spatial points, and p is the number of samples,

and the biggest computational bottleneck in this algorithm is

computing the SVD of this matrix. The matrix is extremely

tall-and-skinny because there usually be millions to billions

or rows and around 1000 columns. Consequently, we can use

an R-SVD procedure [6] to compute the truncated-SVD of the

matrix X by first doing a QR factorization of X, then an SVD

on the small matrix R that results. Let

X = QR

be a QR-factorization, then R = URΣVT , and

X = QUR︸ ︷︷ ︸
U

ΣVT

is the SVD.

In practice, we use an approach in the MapReduce

paradigm [7], which first computes the R in the QR fac-

torization, and then computes U = XVΣ+. This approach,

although economical, may result in low accuracy if Σ is highly

ill-conditioned and we continue to seek alternatives although

we do not seem to observe the worst case loss-of-accuracy. For

the QR factorization, we use a MapReduce implementation [8]

of the communication-avoiding QR scheme [9].

Initially, each row of the matrix X is a record in the MapRe-

duce paradigm, as is each record of the left singular vectors U.

Thus, after the SVD, the interpolation just involves distribut-

ing the coefficients a via the distributed cache and performing

the inner-products. Moreover, we can compute the result for

many interpolants simultaneously – a computational blocking

technique that can amortize the effects of system overhead.

5. RESULTS

We now briefly present some results from a thermal-heating

simulation of a complex geometry to illustrate the performance

of this method on a real-world problem. There are three param-

eters s for this simulation, each of which controls a material

property. The simulation is done with the Aria package in

the SIERRA mechanics toolkit, both developed by Sandia

National Laboratories for their simulations. An individual

simulation has 240 time steps and 32768 spatial points and

takes about 30 minutes to complete on a 32-core machine. Our

database contained the output of 1000 simulations.

The SVD of this data took 30 minutes using the Dumbo

python wrapper [10] with Hadoop 0.21 [11]. In Figure 4, we

show a singular vector as a function. Subsequently, computing

the data a for a single interpolant took about 4 seconds on a

laptop. To evaluate 1000 separate interpolants took 8 minutes

using a C++ code to do the matrix-vector products in a Hadoop

streaming code.

The Hadoop cluster had 62 nodes, with 4 cores on

each node. Thus, neglecting the cost of the SVD, the

model reduction procedure takes 8 minutes · (62 nodes ·
4 cores/node)/1000 simulations = 1.98 core-minutes per

simulation; whereas the original simulation took 32 cores ·
30 minutes = 960 core-minutes, for a speedup of around 450.

5335

0 200 400 600 800 1000
10

−10

10
0

10
10

S
in

gu
la

r
V

al
ue

Index

Fig. 3. The singular values of the thermal-heating simulation.

We find that the singular vectors for the first 781 singular

values are resolved for our heuristic. This is equivalent to the

numerical rank.

Fig. 4. The first right-singular vector of X from our simulation

test-case, plotted as a three-dimensional function. Overall, this

function is quite smooth, as are most of the functions for this

problem.

Including the cost of the SVD, would could be amortized over

many more simulations, reduces the advantage to 100-fold

speedup. Here, we’ve still neglected the cost of computing

the interpolant, which is small compared to the other times

involved and easy to parallelize. This makes it feasible to

use our SVD based surrogate function for the uncertainty

quantification studies discussed in the introduction.

6. FUTURE DIRECTIONS

Given the complexities in altering an industrial simulation

package like Aria, this work highlights an interesting way

that data from a simulation can help build a surrogate for a

simulation. In the future, we hope to develop additional theory

to support our heuristic truncation of the singular values, as

well as to explore additional applications.

7. REFERENCES

[1] L. Sirovich, “Turbulence and the dynamics of coherent

structures. I - Coherent structures. II - Symmetries and

transformations. III - Dynamics and scaling,” Quarterly
of Applied Mathematics, vol. 45, pp. 561–571, October

1987.

[2] G. Berkooz, P. Holmes, and J. L. Lumley, “The proper

orthogonal decomposition in the analysis of turbulent

flows,” Annual Review of Fluid Mechanics, vol. 25, pp.

539–575, 1993.

[3] Paul G. Constantine and Qiqi Wang, “Residual mini-

mizing model reduction for parameterized nonlinear dy-

namical systems,” arXiv, vol. math.NA, pp. 1012.0351,

2010.

[4] Paul G. Constantine, David F. Gleich, and Gianluca Iac-

carino, “Spectral methods for parameterized matrix equa-

tions,” SIAM Journal on Matrix Analysis and Applica-
tions, vol. 31, no. 5, pp. 2681–2699, 2010.

[5] Per Christian Hansen, “Truncated singular value decom-

position solutions to discrete ill-posed problems with

ill-determined numerical rank,” SIAM J. Sci. and Stat.
Comput., vol. 11, no. 3, pp. 503–518, 1990.

[6] Gene H. Golub and Charles F. van Loan, Matrix Compu-
tations, Johns Hopkins Studies in Mathematical Sciences.

The Johns Hopkins University Press, third edition, Octo-

ber 1996.

[7] Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Sim-

plied data processing on large clusters,” in Proceedings
of the 6th Symposium on Operating Systems Design and
Implementation (OSDI2004), 2004, pp. 137–150.

[8] Paul G. Constantine and David F. Gleich, “Tall and

skinny qr factorizations in mapreduce architectures,” in

Proceedings of the second international workshop on
MapReduce and its applications, New York, NY, USA,

2011, MapReduce ’11, pp. 43–50, ACM.

[9] J. Demmel, L. Grigori, M. Hoemmen, and J. Langou,

“Communication-avoiding parallel and sequential QR

factorizations,” arXiv, vol. cs.NA, pp. 0806.2159, 2008.

[10] Klaas Bosteels, Fuzzy techniques in the usage and
construction of comparison measures for music objects,

Ph.D. thesis, Ghent University, 2009.

[11] Various, “Hadoop version 0.21,” http://hadoop.
apache.org, 2010.

Our thanks to Jeremy Templeton and Joe Ruthruff for providing the data

in our simulation. Sandia National Laboratories is a multi-program laboratory

managed and operated by Sandia Corporation, a wholly owned subsidiary of

Lockheed Martin Corporation, for the U.S. Department of Energy’s National

Nuclear Security Administration under contract DE-AC04-94AL85000.

5336

