
A SCALABLE SIGNAL PROCESSING ARCHITECTURE FOR MASSIVE GRAPH ANALYSIS

Benjamin A. Miller1, Nicholas Arcolano1, Michelle S. Beard1, Jeremy Kepner1, Matthew C. Schmidt1,
Nadya T. Bliss1 and Patrick J. Wolfe2

1Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, 02420
{bamiller, arcolano, michelle.beard, kepner, matthew.schmidt, nt}@ll.mit.edu

2Statistics and Information Sciences Laboratory, Harvard University, Cambridge, MA, 02138
wolfe@stat.harvard.edu

ABSTRACT

In many applications, it is convenient to represent data as a graph,
and often these datasets will be quite large. This paper presents an
architecture for analyzing massive graphs, with a focus on signal
processing applications such as modeling, filtering, and signal de-
tection. We describe the architecture, which covers the entire pro-
cessing chain, from data storage to graph construction to graph anal-
ysis and subgraph detection. The data are stored in a new format
that allows easy extraction of graphs representing any relationship
existing in the data. The principal analysis algorithm is the partial
eigendecomposition of the modularity matrix, whose running time
is discussed. A large document dataset is analyzed, and we present
subgraphs that stand out in the principal eigenspace of the time-
varying graphs, including behavior we regard as clutter as well as
small, tightly-connected clusters that emerge over time.

Index Terms— Graph theory, large data analysis, processing
architectures, residuals analysis, emergent behavior

1. INTRODUCTION

As data collection capabilities improve, the amount of data available
for analysis rapidly increases. While improved processing enables us
to work with much larger datasets, it is at the same time important to
develop scalable algorithms and architectures to handle and analyze
massive data.

In many applications, the data of interest can be represented as
a graph. A graph G = (V, E) is a pair of sets: a set of vertices, V ,
representing entities, and a set of edges, E, that represent relation-
ships between the entities. This data representation is used in a wide
variety of domains, from the social sciences to physics and engineer-
ing. While convenient and intuitive, the analysis of graphs is com-
plicated, as they are combinatorial structures of non-Euclidean data
and, thus, cannot be exactly analyzed in the context of Euclidean
vector spaces. To address this, recent work has focused on develop-
ing a statistical detection theory framework for graphs, akin to that
for Euclidean data [1]. As more applications use data in the form

This work is supported by the Intelligence Advanced Research Projects Ac-
tivity (IARPA) via Air Force Contract FA8721-05-C-0002. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for Governmental
purposes notwithstanding any copyright annotation thereon.
Disclaimer: The views and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of IARPA or the U.S.
Government.

of graphs, a focus on detectability of anomalies and scalability of
architectures and algorithms will become increasingly important.

In this paper, we introduce a signal processing architecture
specifically designed for the analysis of massive graphs. This ar-
chitecture encompasses the entire graph processing procedure, from
storage of the raw data to extraction of relational structure to analysis
of the resulting graph. Building on recently-developed technologies,
this architecture provides a framework with which we can easily
analyze large datasets containing complex relationships.

The remainder of this paper is organized as follows. In Sec-
tion 2, we describe the architecture and discuss the data storage for-
mat, the graph construction procedure, and the analysis algorithms
and their complexity. Section 3 introduces our dataset of interest—
a large document database—and outlines graphs of interest derived
from this dataset. In Section 4, we analyze the data using the algo-
rithms described in Section 2, and describe emerging clusters found
in the data, as well as some “clutter” structures that can obscure more
interesting behavior. In Section 5 we summarize and outline future
research.

2. SYSTEM ARCHITECTURE

Our processing chain consists of 3 stages. First, the data are stored
in the D4M format [2]. From this data, we construct graphs repre-
senting a variety of relationships. We then run analysis algorithms
on the resulting graphs. In this section we describe each component
in detail.

2.1. Data into D4M

Given a large dataset, D4M provides a convenient, intuitive interface
for accessing subsets of the data. In this format, the data are stored
in a 2-dimensional associative array, which is a sparse matrix whose
rows and columns are indexed by keys rather than integers. Con-
sider, for example, an associative array holding information about
papers at a conference. If each record contains the paper title, au-
thors, and session (e.g., My Paper Title, A. Researcher, Session 5),
there will be nonzero values in row "title/My Paper Title" only in
columns "author/Researcher, A." and "session/Session 5".

To extract a subset of the data, we can index into ranges of the
associative array, just as is done with matrices in Matlab. For exam-
ple, to extract the work by all authors with the name Researcher in
the example database, we simply index into the column range "au-
thor/Researcher, A,:,author/Researcher, Z,". This operation returns
an associative array with its columns restricted to the authors of in-
terest.

5329978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

2.2. Graph Extraction

With the data in the D4M format, we can easily extract a number
of graphs based on relationships in the data. The D4M architecture
allows for linear algebraic operations on the associative arrays, en-
abling easy construction of the adjacency matrices of a graph, i.e., a
matrix A representing a graph G = (V, E) wherein the entry in the
ith row and jth column of A is nonzero only if (vi, vj) ∈ E.

Returning to the conference program example, with an associa-
tive array A with rows indexed by titles and columns indexed by
authors and sessions. To build a graph in which the vertices are pa-
pers and an edge occurs between two vertices if the corresponding
papers are in the same session, the procedure is simple. First extract
the columns corresponding to sessions, i.e., create a new associative
array

bA = A(:,’session/0,:,session/z,’),

which covers the range of sessions that begin with alphanumeric val-

ues. Now bA is a title-to-session associative array with exactly one
nonzero value per row. To create the desired graph, we simply take

the inner product of this array with itself, A = bAT bA, and A is the
adjacency matrix of the session-cooccurrence graph.

2.3. Graph Analysis

Once the data are in network form, we run graph analysis algorithms
to detect interesting or anomalous behavior. In this paper, we focus
on the eigenspace analysis techniques outlined in [1, 3, 4]. These
algorithms are all based on spectral analysis of the modularity ma-
trix [5], which we interpret as a graph-based residuals matrix. The
modularity matrix for an unweighted, undirected graph is given by

B = A − kkT

2|E| .

Here A is the adjacency matrix of the graph and k is the degree
vector, i.e., a vector in which the ith entry corresponds to the number
of edges adjacent to vertex vi. The term kkT /(2|E|) represents a
first-order fit of the graph to the Chung–Lu random graph model, in
which the probability that an edge occurs between two vertices is
proportional to the product of their expected degrees [6]. We thus
treat B as a matrix of residuals—of the “observed” edges minus the
“expected” edges—and analyze it to find anomalies.

The major computation in this analysis is the calculation of the
eigenvectors and eigenvalues of B. This is done using eigs in Mat-
lab, which uses the implicitly restarted Lanczos method to compute
extreme eigenvalues and their corresponding eigenvectors. One is-
sue in doing this computation is that, while a large A is likely very
sparse, the corresponding B is dense (indeed, an entry in B will
only be zero if an associated vertex is isolated). However, as New-
man points out in [5], since B is the sum of a sparse matrix and
a rank-1 matrix, we can compute the eigenvectors efficiently with-
out computing B. The function eigs can compute eigenvalues and
eigenvectors of a function, so by creating f : R

|V | → R
|V | such that

f(x) = Bx = Ax − k
kT x

2|E| ,

we can exploit the form of B for a much less intense computation.
The running time of eigs on an adjacency matrix is O(|E|m+

|V |m2 + m3) per restart, where m is the number of eigenvectors
computed. (The number of restarts is dependent upon the gap in
magnitude between consecutive eigenvalues of B.) The Lanczos

method computes the eigenvalues via iterative matrix-vector mul-
tiplication, or in our case iteratively evaluating f(x). Assuming
|V | < |E|, computing Ax costs O(|E|) operations, and adding the
computation and subtraction of k(kT x)/(2|E|) adds an additional
4|V | operations, which does not increase the asymptotic running
time. This algorithm, therefore, scales linearly in |E| for a con-
stant m and linearly in |E|m if m grows no faster than the average
degree kavg. The space requirement for this method is O(|V |m),
which scales linearly in |E| if m is O(kavg).

We are also interested in analyzing directed and dynamic graphs.
The modularity matrix for a directed graph is given by

bB = A − koutkin

|E| ,

where kout and kin are, respectively, a column vector of out degrees
(the edge counts going out of the vertices) and a row vector of in
degrees (the edge counts going into the vertices). Note that in this
case the “expected” term has |E| rather than 2|E| in the denomina-
tor, since the edges go in only one direction. As in [7], we use the

“symmetrized” modularity matrix B = (bB + bBT)/2. The running
time will be greater than for undirected graphs, since it requires mul-
tiplication at each iteration by A, AT , koutkin and kT

inkT
out, but the

asymptotic running time will not change, so it will scale similarly.
For dynamic graphs, we consider the filtered modularity matri-

ces over time, as in [4]. Let B(n) be the modularity matrix at dis-
crete time step n. We accumulate the residuals over a time window
of � samples by applying a finite impulse response filter h to create
an aggregated residuals matrix

B̃(n) =

�−1X
i=0

h(i)B(n − i), (1)

where h(i) is a scalar for all integers 0 ≤ i < �. Each iteration now
requires multiplication by the adjacency matrix and degree vectors
at each time step within the window. Letting E(n) be the edge set at

time n, this process has running time O(|V |� +
P�−1

i=0 |E(n − i)|).
(The vertex set is assumed to be fixed to maintain the matrix dimen-
sions.) This slightly alters the running time of the Lanczos proce-
dure, making it O(Ē�m + |V |�m + |V |m2 + m3), where Ē is the
average cardinality of E over the time window. For a fixed window
length, this algorithm scales the same as in the static case.

3. DATASET AND GRAPH CONSTRUCTION

The dataset we analyze is the commercially available Thomson
Reuters Web of Science R© (WoS) database [8]. This dataset is
comprised of records, compiled for research purposes, represent-
ing scholarly publications of the international scientific community,
published between 1900 and present in public commercial and open
source journals and conference proceedings. Each record represents
an individual document, and fields include document title and type,
journal name, author names and institutional affiliations (as pro-
vided in publication), cited references, and publication date. There
are several interesting dynamic graphs we can extract from this data,
including coauthorship graphs, citation graphs, and graphs asso-
ciated with some notion of document similarity, such as common
n-grams.

We obtained a snapshot of the database that contains over 42
million records. The raw data were parsed and inserted into a
database that can be accessed via the D4M interface. The data are
stored in associative arrays in which the rows correspond to unique

5330

Fig. 1. Subject-to-subject citation counts in the first 50 years of WoS
data (log10 scale).

identifiers and the columns are the document metadata. The ma-
jority of the data are in a single associative array, with the more
text-intensive data, such as titles and abstracts, in a separate table.
This data consumes about 300 GB and fits on a single database node.

Of the many potential graphs we can construct from the WoS
dataset, we focus on two in this paper: a coauthorship graph and a
citation graph. Both graphs are dynamic, and we use a temporal res-
olution of one year (since in many cases month and day are not avail-
able). In the coauthorship graph Gauth, the vertices represent authors
and two vertices share an edge in Gauth(n) if they coauthor a docu-
ment published in year n. This is an unweighted graph, although the
edges could include weights corresponding to the number of docu-
ments coauthored. In the citation graph Gcite, the vertices represent
documents and a directed edge occurs from u ∈ V to v ∈ V in
Gcite(n) if u cites v in year n or earlier. The rationale for using a cu-
mulative graph for citations but not authors is that citations are, for
the most part, static (i.e., the documents cited are fixed at the time of
publication), while authors may change collaborators over time.

These graphs are easily constructed from the associative arrays
in which we store the data. To create a coauthorship graph, select
the author columns and take the inner product of the resulting asso-
ciative array with itself. To break up the graph by year, we can first
select subsets of rows with nonzero entries in columns corresponding
to a certain date range. For citation graphs, the construction process
is even more straightforward. Since there are columns correspond-
ing to the identifier for the cited documents, we simply extract the
columns for the references.

It is worth noting at this point that, in addition to graphs, we
can construct matrices of useful data statistics in a similar fash-
ion. For example, in an anomaly detection problem, we may want
to determine the likelihood that an article published in one subject
will cite an article in another. To get the subject-to-subject citation
counts, we extract a document-to-subject array Ads and a document-
to-document citation array Acite, and compute C = AT

dsAciteAds.
The subject-to-subject citation count matrix for the first 50 years of
WoS records is shown in Fig. 1. The largest value in a given row or
column of C tends to fall on the main diagonal, indicating that docu-

Fig. 2. The largest 30 eigenvalues of the coauthorship graph (top)
and citation graph. There is a slow upward trend in both cases with
a number of excursions, which in most cases correspond to clutter.

ments are often most likely to cite (or be cited by) other documents in
the same subject area. There are also clusters corresponding to sub-
fields of a topic area; for example, chemistry is split into analytical,
applied, and other subfields. Using this information has the potential
to increase our modeling ability, providing a better expected value
model than the one discussed in Section 2.3 using tools from link
prediction and the point process model of [9].

4. DATA ANALYSIS

At the time of this writing, we have extracted Gauth and Gcite over the
course of the first 60 years of WoS records. In the 2 million records
in the database over this time period, there are 549,726 unique au-
thors and 4,668,824 documents (including cited documents that are
not in the database), so these are the sizes of the vertex sets in the cor-
responding graphs. We analyze each dynamic graph over a sliding
5-year time window, using a ramp filter (i.e., h(i) in (1) decreases
linearly as i increases) to emphasize emerging connectivity. The 30
largest eigenvalues and eigenvectors of B̃ are computed, which, for
the (larger) citation graph, takes approximately one hour per time
window on a single processor.

The largest eigenvalues of the integrated modularity matrices are
shown in Fig. 2. In both graphs, the eigenvalues gradually increase
over the course of the 60 years (although more quickly in the citation
graph since it is cumulative). There are several points in which the
largest eigenvalues deviate substantially from the general trend. We
will consider one window from each dynamic graph, as indicated in
the figure: the window centered at 1948 for Gauth and the window
centered at 1952 for Gcite. In both of these windows, several of the

5331

Fig. 3. Emerging clusters in the WoS graphs. Adjacency matrices are shown for subsets of the coauthorship graph (top row) and the citation
graph (bottom row) over 5-year time windows (increasing year from left to right). In both cases, tightly connected clusters emerge over time.

eigenvalues are significantly larger than eigenvalues of similar rank
in earlier and later windows.

4.1. Clutter

Upon deeper inspection, we find that many of the vertices that stand
out in the space of largest modularity are somewhat uninteresting,
which we see as analogous to clutter in radar processing. In Gauth,
several of the eigenvectors with large eigenvalues are aligned with
large cliques in which no authors had previously collaborated. These
large cliques (on the order of 50 vertices) often occur for documents
of type “discussion”, and could be easily detected by finding docu-
ments with large author lists.

In the citation graph we see a different kind of clutter. The resid-
uals space of Gcite is often dominated by review articles that cite
many hundreds (sometimes thousands) of documents. Again, we do
not really benefit from analyzing the data as a dynamic graph, as
these vertices could be found by simply looking for documents with
long lists of references.

4.2. Emerging Clusters

Looking under the clutter, however, we see some interesting behav-
ior involving emerging clusters of nodes. Looking in the space of
eigenvectors that do not correspond to clutter behavior, we find a
few vertex subsets that stand out from the rest of the graph. Sparsity
patterns of the adjacency matrices corresponding to these subgraphs
are shown in Fig. 3. In Gauth, we see two sets of authors (publishing
mostly in medical journals), each of which gradually increases the
number of connections within the subset over the window. These
subgraphs are smaller than the large cliques that appear suddenly in
the same window: one has 20 vertices and the other has 32, and nei-
ther is ever a clique. However, our temporal integration technique
emphasizes the increasing connectivity over time and brings these
subgraphs into the space of eigenvectors with larger eigenvalues.

We see similar behavior in Gcite. In this case, as time passes,
we see two subsets of documents accumulating a significant amount
of internal citation, with some citation between the two subsets.
Most documents in these subsets are in biochemistry and microbi-
ology, with a few in medicine and other areas, and largely focus
on metabolic properties of various acids and proteins. Again, the
emerging connectivity is emphasized by the ramp filter and these
relatively small subsets are brought into the space of large residu-
als.

5. SUMMARY

In this paper, we outline an architecture for analyzing large graph
data. The architecture is supported by the D4M framework, allowing
easy and intuitive construction of graphs from databases, and uses an
efficient eigenspace analysis technique for signal-processing-based
analysis on the constructed graphs. We analyze two large, dynamic
graphs derived from the Web of Science database (one with over 500
thousand and one with over 4 million nodes), and find different types
of clutter in the different graphs, as well as small, emerging clusters
in the eigenspace of graph residuals. Future work will include de-
veloping automated methods to filter away clutter in the graph data,
incorporating metadata into our models of graph residuals, and ana-
lyzing multi-graphs in which different types of edges correspond to
different relationships.

6. REFERENCES

[1] B. A. Miller, N. T. Bliss, and P. J. Wolfe, “Toward signal pro-
cessing theory for graphs and non-Euclidean data,” in Proc.
ICASSP, 2010, pp. 5414–5417.

[2] J. Kepner, “Massive database analysis on the cloud with D4M,”
in Proc. HPEC Workshop, 2011.

[3] B. A. Miller, N. T. Bliss, and P. J. Wolfe, “Subgraph detection
using eigenvector L1 norms,” in Advances in Neural Inform.
Process. Syst. 23, J. Lafferty, C. K. I. Williams, J. Shawe-Taylor,
R. Zemel, and A. Culotta, Eds., 2010, pp. 1633–1641.

[4] B. A. Miller, M. S. Beard, and N. T. Bliss, “Matched filtering for
subgraph detection in dynamic networks,” in Proc. IEEE Statis-
tical Signal Process. Workshop, 2011.

[5] M. E. J. Newman, “Finding community structure in networks
using the eigenvectors of matrices,” Phys. Rev. E, vol. 74, no. 3,
2006.

[6] F. Chung, L. Lu, and V. Vu, “The spectra of random graphs
with given expected degrees,” PNAS, vol. 100, no. 11, pp. 6313–
6318, 2003.

[7] E. A. Leicht and M. E. J. Newman, “Community structure in
directed networks,” Physics Review Letters, vol. 100, 2008.

[8] “Thomson Reuters Web of Science,” http://thomsonreuters.com/
products_services/science/science_products/a-z/web_of_science.

[9] P. O. Perry and P. J. Wolfe, “Point process modeling for directed
interaction networks,” 2010, http://arxiv.org/abs/1011.1703.

5332

