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ABSTRACT

Advances in compressed-sensing (CS) have sparked interest
in designing information acquisition systems that process data
at close to the information rate. Initial proposals for CS sig-
nal acquisition systems utilized random matrix ensembles in
conjunction with convex relaxation based signal reconstruction
algorithms. While providing universal performance bounds,
random matrix based formulations present several practical
problems due to: the difficulty in physically implementing key
mathematical operations, and their dense representation. In
this paper, we present a CS architecture which is based on a
sub-linear time recovery algorithm (with minimum memory
requirement) that exploits a novel structured matrix. This for-
mulation allows the use of a reconstruction algorithm based
on relatively simple computational primitives making it more
amenable to implementation in a fully-integrated form. The-
oretical recovery guarantees are discussed and a hypothetical
physical CS decoder is described.

Index Terms— Compressed-Sensing, Structured-Matrices,
Sub-linear Recovery Algorithms

1. INTRODUCTION

Compressed sensing (CS) [1, 2] is a relatively new signal pro-
cessing technique which enables the recovery of sparse vectors
from what was previously thought to be an insufficient quantity
of information. The problem of CS is stated mathematically as
follows: let k,N be positive integers such that k << N . There
exists a matrix Φ ∈ RM×N , with M = O(k log(N/k)), such
that (almost) every k-sparse vector x ∈ RN×1 can be recon-
structed from linear non-adaptive measurements y = Φx.

Although the assumption of sparsity seems prohibitively
restrictive, many real-world signals can be well-approximated
by sparse-ones. This observation is exploited in many (lossy)
compression algorithms such as JPEG and MP3. A further ben-
efit of sampling in this manner is that the samples are obtained
at closer to the information rate of the signal and come in a
compressed form.

Achieving sub-Nyquist rate signal acquisition is particu-
larly appealing in light of the fact that current limitations on sig-
nal acquisition system bandwidth is limited by currently avail-
able digitizer performance [3,4]. This appeal is reflected in the
copious attention these efforts have received in the literature.
Research in this area has resulted in a number of CS Sampling
(encoder) architectures, [5–8] as well as physical implementa-
tions [9, 10] (see [11] for more detail).

In contrast to the progress that has been made in develop-
ing CS encoders, to the best of the authors’ knowledge, there
appears to have been few if any attempts at realizing a hard-
ware platform which implements a recovery algorithm for CS
type samples (decoder). The relative paucity of effort at realiz-
ing a hardware CS decoder may stem from the fact that compu-
tations used in basis pursuit1 are difficult to physically realize.
For example, Fixed-Point Continuation (1.1), see [13]:

min
x∈RN

||x||1 + μ

2
f(x),

where f(x) = ||Φx− y||22 and μ > 0
(1.1)

is the basis-pursuit method which uses the least complex func-
tions. The two essential steps (during every iteration) involve
performing a gradient descent based on f(x)2 followed by a
soft-thresholding operation Sν(·) to account for the �1 term.

∇f(x) = Φᵀ(Φx− y) (1.2)

Sν(·) := sgn(·)�max{| · | − ν, 0}, where ν > 0 (1.3)

with (x� y)i = xiyi and sgn(·) is the signum function

The computations in (1.2) and (1.3) requires: matrix multipli-
cation and addition, as well as the implementation of several
other exotic functions.

In this paper, we present the results of an ongoing effort
to realize a hardware decoder. We introduce a sub-linear re-
covery algorithm that exploits a novel sampling matrix that is:
deterministic, structured and highly scalable. The construc-
tion is based on labeling the ambient state-space (indexes of
entries of the input vector x) with binary sequences of length
n = log2 N , and summing up entries of x that share the same
values (up to a fixed length) for a subset of the binary digits of
the labelling sequence. It is also notable, that the presented ma-
trix is RIP-less but compatible with basis-pursuit methods [14]

2. DEFINITIONS AND NOTATIONS

The following definitions will be useful in describing the pro-
posed measurement matrix:

Definition 1 Let m,n and d be integers. A (n, d) summary is
a pair X = (S, c), where S is a subset of {1, 2, · · · , n} of size
d, and c is a binary sequence of length d. A (m,n, d) summary

1The standard recovery technique suggested by CS theory [12]
2The second term in (1.1) μ

2
f(x) is used to to account for noise;

the purpose of this term is to penalize any residual error.
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codebook is a collection C = {(Si, cj) | 1 ≤ i ≤ m, 0 ≤ j ≤
2d − 1} of (n, d) summaries, where Si’s are distinct subsets,
and cj is the length d binary representation of the integer j. If
m =

(
n
d

)
, C is called the complete (n, d) summary codebook.

We also set the following conventions. We say that a
binary label b of length n “conforms” to a (n, d) summary
(S, c), or interchangeably that the summary (S, c) “appears”
in b iff b(S) = c. In addition, two (n, d) summaries (S, c)
and (S′, c′) are said to conform, if there is a binary label b of
length n that conforms to both of them. We use the operators
‖ and ∦ to denote conformity and its complement respectively.
For a binary sequence b, we denote its decimal numerical value
by Δ(b). The following definition will also be useful later in
the technical discussions.

Definition 2 For a set S and a number x, I(S, x) indicates the
number of elements of S that are less or equal than x. Conse-
quently, if the elements of S are listed in increasing order as
s1 < s2 < · · · < sd, then I(S, si) = i ∀1 ≤ i ≤ d.

To a given (m,n, d) summary codebook C (Definition 1),
we associate a binary matrix Φ of size M×N where M = 2d×
m, and N = 2n, in the following way. For every (S, c) ∈ C,
there is a row φ = (φ1, . . . , φN ) in Φ that satisfies:

φj =

{
1 bj(S) = c
0 else

1 ≤ j ≤ N, (2.1)

where bj is the n-bit binary representation of j, and b(S) is the
subsequence of the binary sequence b, indexed by the elements
of the set S in increasing order. In other words, a has a 1 in
the j’th coordinate, only if the binary representation of j − 1
conforms to (S, c). Note that every column of A has exactly m
ones, and each row has exactly 2n−d ones.

To clarify the above construction protocol, we consider the
following examples illustrated in Figure 1, with n = 4 and
d = 2. Suppose that a summary (S, c) is given with S = {1, 2}
and c = 10. All possible binary sequences of length 4 that
conform to (S, c) are listed in Figure 1. If these sequences
are converted to decimal values and increased by 1, they give
the indices of the columns where there is a 1 in the considered
row, namely 9, 10, 11 and 12. The full row a of length 16 is
displayed in Figure 1 as well.

1 0 0 0 
1 0 0 1 
1 0 1 0 
1 0 1 1     

1 0 x x 

Fig. 1: An example (4, 2) summary and the corresponding row

of the structured measurement matrix.

An example binary 12 × 32 matrix is illustrated in Fig-
ure 2 which corresponds to a (5, 2) summary codebook with
12 summaries. The rows of the displayed matrix are labeled
with corresponding summaries and the columns are labeled by
distinct binary sequences of length 5. Entries colored in black
represent 1’s, and white is 0.

00000
00001
00010
00011
00100
00101
00110
00111
01000
01001
01010
01011
01100
01101
01110
01111
10000
10001
10010
10011
10100
10101
10110
10111
11000
11001
11010
11011
11100
11101
11110
11111

00XXX
01XXX
10XXX
11XXX
XX0X0
XX0X1
XX1X0
XX1X1
X0X0X
X0X1X
X1X0X
X1X1X

su
m

m
ar

ie
s

labels

Fig. 2: An example of a measurement matrix constructed based

on a (5, 2) summary codebook. Black is 1 and white is 0.

2.1. Reconstruction Algorithm

The proposed sublinear time reconstruction algorithm is called
Summarized Support Index Inference (SSII) [14, 15], as it at-
tempts at finding (inferring) the labels of the support set indices
of the unknown vector. The algorithm is based on iteratively in-
ferring the nonzero entries of the signal based on one of the dis-
tinct values of y and its various occurrences. The detailed pro-
cedure is described in Algorithm 1. In every iteration, one sup-
port index label is identified. The main loop thus contains the
following subroutines: 1) The value classification subroutine
scans through the entries of y and groups together the nonzero
coefficients with (almost) equal values, 2) The coarse index
identification subroutine cycles through all the occurrences of
a particular coefficient of the vector y grouped together by the
value classification subroutine. For each group, the correspond-
ing summaries are identified, and the subroutine attempts to
identify a binary label that conforms to all of them. In the pres-
ence of noise, this subroutine settles for finding a label that con-
forms to as many summaries as possible. 3) In the case that the
enforced label is not unique and contains a few undetermined
bits, the fine index identification subroutine tries to estimate the
remaining bits by a series of simple value counting rules. In
the presence of noise, this turns into a set of hypothesis tests
on particular subsets of coefficients of y. 4) Finally, the rejec-
tion step verifies whether the estimated label is actually in the
support set or not. If a certain statistical criteria for the mea-
surements containing the estimated index is not satisfied, the
label is rejected and the search continues. A block diagram de-
scribing these fundamental steps and there interconnections are
depicted in Figure 3.

3. RECOVERY BOUNDS

We provide a theoretical guarantee for the performance of the
proposed algorithm in the noiseless case under certain condi-
tions on the sparse signal. Specifically, we consider the class
of signals x, for which no two disjoint subsets of the nonzero
entries sum up to the exact same number. For simplicity we
refer to the signals with this property as distinguishable. Note
that for nonzero coefficients drawn randomly from a continu-
ous distribution, this conditions hold with probability 1. The
proof of the following theorem is given in the reference [14].
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Fig. 3: Block diagram describing the subroutines of Algorithm 1.

Algorithm 1 Summarized Support Index Inference

1: Input: Vector y = (y1, y2, . . . , yM )T and corresponding

summaries (Sj , cj), 1 ≤ j ≤ M .

2: Output: Estimate x̂ of the sparse vector x.

3: Initialize: Set x̂ := 0.

4: Set S := {Sj |1 ≤ j ≤ M}
5: Identify Γ := {yj |1 ≤ j ≤ M yi �= 0}
6: for γ ∈ Γ do
7: Set J := {j|yj = γ}
8: if �j′, j′′ ∈ J s.t. (Sj′ , cj′) ∦ (Sj′′ , cj′′) then
9: Set b := −1n×1.

10: for j ∈ J do b(Sj) := cj end for
11: end if
12: Set S1 := {1 ≤ i ≤ n | b(i) �= −1} and S2 :=

{1, 2, . . . , n} \ S1.

13: if S2 = ∅ then
14: Set t := Δ(b) + 1, x̂t := γ, y := y − Φx̂, goto 5.

15: else
16: for S ∈ P (S) and l ∈ S2 ∩ S do
17: R0 := {yj |Sj = S,b‖(Sj , cj), cj(I(S, l)) = 0}
18: R1 := {yj |Sj = S,b‖(Sj , cj), cj(I(S, l)) = 1}
19: if R0 = {0} then b(l) := 1, goto 12. end if
20: if R1 = {0} then b(l) := 0, goto 12. end if
21: end for
22: end if
23: end for

Theorem 1 Let Φ be a measurement matrix that corre-
sponds to a random (m,n, d) summary codebook, and let
0 < λ < 1 and α > 0 be constants. Then, for k =

λ2−d log2(
√

α/2+1/2) a random k-sparse distinguishable vec-
tor x can be recovered by Algorithm 1 with probability at least
k3ne−αn + kn (1− (1− λ)d/n)m.

Substituting the parameters d,m, λ and α with appropriate
values in terms of M,k and N we can conclude from the above
theorem that the required number of measurements for almost
surely reconstructing k-sparse signals is:

M = (k logN log logN) (3.1)

4. HYPOTHETICAL HARDWARE
IMPLEMENTATION

In current analog signal processing architectures which imple-
ment CS-based sampling, correlation between the input analog
signal and a row of the sampling matrix Φ is accomplished by
multiplying the input with the output of an LFSR. Since the
primary advantage of the proposed sparse signal acquisition
framework is in the decoder architecture, we simply state that
an encoder architecture compatible with our proposed matrix
Φ could be realized with the use of simple binary counters and
comparison logic. Consequently, one possible advantage of this
approach is that unlike an LFSR approach, only the logic con-
nected to the least significant bit of the binary counter would
need to operate at the maximum speed of the system.

A hypothetical decoder architecture is shown in Figure 3.
The required operations are: 1) Sorting in the value identifi-
cation block, 2) The coarse and fine index identification steps
which are primarily based on a majority-selection operation,
3) a verification step which involves a matrix-vector multiply
compactly and efficiently implementable due to the fact that
each row of Φ has a concise encoding.

The most complex computation of our decoding architec-
ture is contained in the value identification subroutine: thresh-
olding, sorting, and pair-wise comparison of the entries of the
observation vector y. However, the complexity of these oper-
ations as a function of the number of observations M is un-
likely to become a performance limiting factor when compared
to the pragmatic issues in implementing an encoder of corre-
sponding size. In addition, due to the fact that our matrix has a
highly structured and concise description, memory storage re-
quirements scale well with size and compares favorably with
other classes of measurement matrices. We emphasize that
even when compared to its other sub-linear counterparts (e.g.
[16–19], our algorithm has minimum storage requirement and
relies on very rudimentary signal-processing techniques that do
not rely on higher-order interaction of elements of y and Φ.
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Fig. 4: Required oversampling rate for successful recovery of Algorithm 1 on
proposed constructions versus signal dimension for various sparsity levels.

5. SIMULATIONS

The empirical performance of Algorithm 1 in the absence of
noise is shown in Figure 4. For a comprehensive study of the al-
gorithm including robustness to noise, we refer the reader [14].
Due to the efficiency of the method, it is possible to perform
simulations for very large values of N . In Figure 4, the em-
pirical required over-sampling rate for Algorithm 1 is plotted
against the signal dimension N , for various sparsity levels k.
The required criteria for the sufficient number of measurements
here is the probability of successful recovery being larger than
90%. Note that when N is increased by 3 orders of magni-
tude, the required number of measurements increases by a fac-
tor of 3, which is an indication of the logarithmic dependence
of M on N . Furthermore, as the signal becomes less sparse
(i.e. k increases), the required oversampling factor decreases.
For k = 100, this ratio is only about 3 for N = 1024, and
about 8 for N = 3.3 × 107. This is significantly better than
existing sublinear recovery algorithms.

6. DISCUSSION

We have analyzed the SSRI algorithm with respect to many dif-
ferent practical performance metrics which took into consider-
ation various physical implementation issues. Primary consid-
erations in the design were: scalability of the ambient dimen-
sion and sparsity, performance bounds, recovery time, robust-
ness to noise, and amenability to hardware implementation of
the decoder: with the end-goal being real-time signal recovery.
The theoretical aspects of the SSRI algorithm discussed in [14]
along with a detailed comparison to other state-of-the-art sub-
linear algorithms. We emphasize there is no single sublinear
recovery algorithm which delivers comparable performance in
all the metrics considered.

While the SSRI algorithm is composed of simpler mathe-
matical operations that make it more amenable to physical im-
plementation, it has the same drawbacks typically accompanied
by other sublinear algorithms reported in the literature. The
most notable drawback being that the ability to reconstruct sig-
nals, at present, from a wide variety of structured dictionaries
comes at the price of extensive memory requirements. However
this is not a definitive restriction and is the subject of ongoing
investigation.
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