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ABSTRACT

We introduce a novel analog-to-digital converter (ADC)

based on the traditional successive approximation register.

This architecture employs compressive sensing (CS) tech-

niques to acquire and reconstruct frequency sparse signals.

One important difference between our approach and tra-

ditional CS systems is that our architecture constrains the

number of bits used during acquisition rather than the num-

ber of measurements. Our system is able to flexibly partition

a fixed budget in order to trade the number of measure-

ments it acquires with the quantization depth given to each

measurement. We show that this degree of flexibility is

particularly advantageous for ameliorating the CS noise fold-

ing phenomenon, allowing our ADC significant gains over

measurement-constrained compressive sensing systems.

Index Terms— analog-digital conversion, compressed

sensing, nonuniform sampling

1. INTRODUCTION

Modern sensing applications are pushing traditional receivers

based on the Nyquist criteria to the edge of their sensing capa-

bilities and beyond. This data deluge has forced researchers

to consider alternative sampling schemes that can conserve

sensing resources by acquiring the desired information in a

signal more efficiently. Recent research in the field of com-

pressive sensing (CS) accomplishes this goal for the class of

sparse signals. Rather than acquire N samples of a signal at

the Nyquist rate, CS attempts to acquire sufficient information

from the signal using M < N linear measurements. This al-

lows systems based on compressive sensing to save precious

resources over their Nyquist-based counterparts.

The resource savings of CS are tempered in real world ap-

plications by the noise folding phenomenon, which observes

that any noise power present in the desired signal of inter-

est will be amplified by 3 dB for every octave of compres-

sion. Clearly, noise folding can be mitigated by acquiring
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additional measurements, but this would seem to defeat the

purpose of CS entirely. However, in many systems the ac-

quisition cost is not determined by the number of measure-

ments acquired. In an ADC, for example, cost is generally

framed in terms of energy consumption and storage complex-

ity, which depends only on the number of bits used during ac-

quisition. A flexible ADC would allow one to trade the num-

ber of measurements M acquired with the quantization depth

b given to each measurement subject to a total bit constraint

B. As shown in the work of Laska, et al [4] such an operating

environment provides an opportunity to ameliorate the noise

folding burden by acquiring a large number of low-precision

measurements. The benefits of this operation can be seen at

a high level by considering two sensing extremes: First, for

input signals at high SNR, the impact due to noise folding is

small, and so the error in the representation is dominated by

quantization error. In this case, it is preferable to acquire a

small number of measurements at very high bit depth. On the

other hand, when the input SNR is low, noise folding becomes

a greater concern, and the converter will perform better by

shifting its resources towards acquiring more measurements

(thus mitigating noise folding) at the expense of having lower

precision measurements.

In this work we propose a CS acquisition system based on

the SAR ADC that is tailored toward alleviating noise folding.

We dub our approach the Bit-Constrained Compressive SAR

(BCC-SAR) due to its ability to flexibly trade measurements

for quantization depth subject to the constraint B = Mb and

with each operating point having equal cost.

Our work shares many similarities with the system de-

scribed in [5], which is also based on the SAR ADC. This

converter acquires a fixed number of measurements with non-

uniform quantization depth by randomly sampling in time and

forcing closely spaced time samples to sacrifice quantization

resolution when interrupted by the acquisition of a new sam-

ple. This system has been shown to work well for high SNR

signals acquired with a very small number of compressive

measurements, with its primary advantage being the simplic-

ity of its implementation and acquisition scheme. However,

the converter of [5] possesses some limitations. First, this

design does not necessarily lead to the appropriate use of sys-

tem resources, which are fundamentally in terms of the total
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number of bits rather than the number of measurements. Fur-

thermore, the sampling scheme employed can lead to a wide

variance in the bit depth of the measurements which generally

leads to suboptimal system performance. Lastly, the authors

of [5] consider neither the impact of thermal noise nor that of

noise folding in their experiments, which is the driving force

behind our architecture.

The remainder of this paper is organized as follows: in

Section 2 we provide the relevant background on analog-to-

digital conversion and compressive sensing. In Section 3 we

discuss the relationship of noise folding to optimal quantiza-

tion depth and argue that quantization depth should be tai-

lored to the input signal to noise ratio to enable optimal per-

formance. We present our ADC architecture in Section 4 and

show how it can modify its acquisition strategy in different

operating scenarios. We present several numerical simula-

tions in Section 5 to showcase the utility of our approach and

provide concluding remarks in Section 6.

2. BACKGROUND

2.1. Analog-to-digital conversion with the SAR ADC

Practical signal acquisition requires quantizing signal sam-

ples to a finite number of bits. One popular architecture for

accomplishing this is the SAR ADC [3], a block diagram of

which is displayed in Figure 1. The S/H circuit latches an in-

put voltage Vin and searches for a digital codeword that min-

imizes the approximation error. A Q-bit SAR converter esti-

mates each sample with up to Q bits of precision. It begins by

first estimating the most significant bit (MSB) by activating

the MSB and feeding this result to a digital-to-analog con-

verter (DAC). The DAC converts this message into a corre-

sponding analog signal which it then feeds to the input of a

binary comparator which determines whether or not the DAC

signal is larger or smaller than Vin. If the DAC signal is

greater, then the MSB is not needed and set to zero; other-

wise the MSB remains active throughout the remainder of the

decoding process. This process continues from MSB to LSB,

with an additional bit of accuracy being added at each clock

cycle.
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Fig. 1. Block diagram of the SAR ADC.

Due to the SAR requiring Q clock cycles to acquire Q bits

of precision, the SAR architecture can naturally be adapted to

tradeoff sampling rate and quantization accuracy by choosing

to terminate its refinement early in favor of acquiring the next

sample sooner.

2.2. Compressive Sensing

Compressive sensing [1] concerns itself with the acquisition

of sparse signals at rates close to information rate of the sig-

nal. Let x ∈ R
N be a signal that is K-sparse in a transform

basis Ψ. Thus, we can write x = Ψs with ‖s‖0 = K. A

central result of compressive sensing states that x can be rep-

resented without loss of information from a set of M < N
linear measurements computed via a compressive measure-

ment operator Φ:

y = Φx = ΦΨs = As

provided that A = ΦΨ satisfies the restricted isometry prop-

erty (RIP) with RIP constant δ < 1. This condition guaran-

tees that, with high probability, signal norms of all K-sparse

signals are preserved by the measurement operator. In this

work, we concern ourselves with the Fourier sampling oper-

ator A = N
M IΩΨ, where IΩ is an M × N restriction of the

identity matrix to the set of rows indexed by Ω and Ψ is the

IDFT basis. When applied to frequency sparse signal, this

operator corresponds to random sampling in the time domain.

The best known theoretical results for Fourier Sampling are

given in [6] which state that M = |Ω| = O(K log4 N) is

sufficient for the RIP to be satisfied.

Signal reconstruction from the observed measurements

can be accomplished in a number of ways. A particularly

useful method when quantization and/or thermal noise is

present in the measurements is to solve a convex program of

the form:

min ‖s‖1 subject to ‖y −As‖2 ≤ ε (1)

with the constant ε chosen appropriately to bound the distor-

tion in the observed measurements.

3. SIGNAL MODEL AND NOISE FOLDING

3.1. Signal Model

We consider the following signal observation model:

yB = Qb

(A(s+ n)
)
, (2)

where A is the Fourier Sampling operator described in Sec-

tion 2.2 and Qb is a b-bit scalar quantizer. The frequency do-

main signal s is K-sparse with coefficients drawn i.i.d. from

N (0, σ2
s). The noise term n is statistically white with covari-

ance matrix Σn = σnI and is uncorrelated with s. We define

the input signal to noise ratio (ISNR) as:
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ISNR := 10 log10

( ‖s‖22
‖n‖22

)
. (3)

3.2. Bit Depth vs Noise Folding

The noise term n in (2) is added directly to the desired signal

s and processed by A. As shown in [2], the covariance of

An is given by N
M σ2

nI. The consequence of this is that the

measurement operator A doubles the variance of the noise for

every octave of compression that it provides. This additional

noise variance naturally degrades reconstruction performance

as well. We can bound the effect of this noise by defining

z = As− y and applying Theorem 4.1 of [2] from which we

can write:

Kσz

1 + δ
≤ E

(‖s− ŝ‖22
) ≤ Kσz

1− δ
, (4)

where ŝ is the oracle reconstructed signal. A consequence of

(4) is that the expected reconstruction performance increases

with a corresponding decrease in the error per measurement.

For the observation model of (2) we have two sources of dis-

tortion: the folded thermal noise and error induced by the

scalar quantizer. Here we provide analysis for these distortion

terms which will motivate our proposed architecture. First,

the folded thermal noise provides an expected squared dis-

tortion of N
M σ2

n to our signal. The exact distortion for the

scalar quantizer is, unfortunately, not amenable to direct anal-

ysis. However, assuming that the quantizer is range limited to

R = ‖As‖∞ the mean square distortion is ≈ O(2−2b), sub-

ject to the constraint B = Mb.
These relations provide us our fundamental tradeoff. As

we increase the resolution per sample, we decrease the quan-

tization error per sample. This however, also decreases the

number of measurements that we can acquire which increases

the distortion due to noise folding. Optimally, we would like

to operate at a point on the constraint B = Mb where the dis-

tortion due to noise folding is approximately equal to the dis-

tortion due to quantization. This point of operation depends

on the ISNR. At high ISNR, the distortion due to quantization

noise is higher than the distortion due to noise folding. In this

case, we would be more concerned with acquiring highly pre-

cise measurements at the expense of obtaining a large num-

ber of measurements. At low SNR, the opposite is true; noise

folding presents more distortion and so we acquire a large

number of low precision measurements.

4. SAMPLING SCHEME

The BCC-SAR provides flexibility in choosing an operating

point (M, b) on the B = Mb curve, which can be used to

minimize the error per measurement. Changing the operating

point of the BCC-SAR requires only small adjustments to the

SAR ADC of Figure 1. The scope of this modification is lim-

ited to controlling the time instances and quantization depth

of the sampling function. Let Ω = {ω1, ω2, . . . , ωM} denote

the set of M time instance at which we choose to sample. Due

to the overall bit budget B and the serial nature in which the

SAR converter acquires additional bits of precision, Ω must

satisfy two constraints. First, we must ensure that for any pair

of time instances ωi, ωj ∈ Ω that |ωi − ωj | > b for all i �= j.

Second, we must ensure that |Ω| · b ≤ B.

We can generate such a sample set as follows: Let S =
{1, 2, . . . , N} denote the original index set and let P = π(S)
denote a pseudorandom permutation of S. We construct Ω
iteratively by moving in order through P . At the ith itera-

tion, we add Pi = Sπi to Ω. To enforce the constraint that

all elements of Ω must lie at a distance no less than b sam-

ples from its nearest neighbors, the algorithm removes the el-

ements {Sπi
− b + 1 . . . Sπi

− 1, Sπi
+ 1, . . . , Sπi

+ b − 1}
from P . This ensures that the sampling set Ω will be able to

sample all entries to the desired precision.

In practice, it may not be possible to operate at an arbitrary

point (M, b) such that B = Mb, especially as B → N . This

is due to the possibility that the construction of Ω will exhaust

the set of feasible sample points before exhausting the total bit

budget B. This is a function of the random nature in which

samples are chosen; it is possible that our sampling pattern Ω
will not be sufficiently dense over the index set {1, 2, . . . , N},

resulting in a partition that includes a large number of unus-

able time intervals. Thus, for large values of B it may only

be possible to operate at a point (M, b) with B ≥ Mb. In this

event, one could opt to acquire lower precision measurements

with the remaining bits, or to increase the quantization depth

at each measurement.

5. EXPERIMENTS

We now present a series of numerical simulations that val-

idate the BCC-SAR architecture. We first demonstrate the

advantage of the BCC-SAR to the measurement-constrained

compressive SAR proposed in [5] (hereafter referred to as

the MCC-SAR). We consider in all trials a randomly drawn

frequency sparse signal with K = 2 and N = 1024 with

no additive noise (infinite ISNR). We observe samples ac-

cording to the model (2) with the quantizer range R set to

an oracle value of ‖As‖∞ and with each sample allowed to

take a maximum of 16 bits/sample. We vary the number of

measurements taken by the MCC-SAR over the range M ∈
[50, 100, 150, 200, 250, 300]. After observing measurements

with the MCC-SAR, we reconstruct the signal using the pro-

gram specified in [5]:

ŝ = argmin ‖s‖1 subject to ‖W (y −As) ‖2 ≤
√
M

(5)

and calculate the reconstruction error e = ‖ s−ŝ
s ‖. We then

observe the same signal with the BCC-SAR using a bit bud-

get B equal to the observed number of bits used by the MCC-

SAR at a quantization depth b = 16. In general, the BCC-
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SAR will acquire fewer measurements than the MCC-SAR.

We again reconstruct according to (5) with W = I and again

measure the reconstruction error. For each value of M , we re-

peat our experiment 100 times and compute an average recon-

struction error ē. We then compute the average reconstructed

signal to noise ratio (RSNR) via RSNR = 10 log10
(
1
ē

)
.

We display our results in Figure 2, where it is clear that

the BCC-SAR consistently achieves a higher average output

RSNR than the MCC-SAR. This is due to its obtaining sam-

ples of consistent precision while still maintaining a sufficient

number of measurements to enable reconstruction. By con-

trast, low resolution samples that often occur in the MCC-

SAR tend to dominate the reconstruction error.
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Fig. 2. Comparison of the MCC-SAR converter of [5] for

a fixed number of measurements with the BCC-SAR on an

equivalent bit budget.

Next, we examine the tradeoff between quantization depth

and the number of measurements acquired for various values

of ISNR. We consider signals with length N = 4096 and

sparsity level K = 6. We simulate various values of the bit-

budget B ∈ (N10 ,
N
2 ), values of b ∈ {2, 4, 8, 16}, and val-

ues of ISNR ∈ {5, 15, 30, 35} dB. At each combination of

parameters we reconstruct the signal using oracle-based re-

construction and calculate the resulting RSNR averaged over

100 trials. As expected, we obtain better performance at high

ISNR by acquiring a smaller number of high precision mea-

surements. In contrast, at low ISNR we obtain better perfor-

mance by acquiring a large number of measurements at re-

duced bit depth. In particular we note gains at low ISNR of

nearly 4 dB by using coarser quantization with a larger num-

ber of measurements.

6. CONCLUSION

We have presented a bit-constrained SAR ADC that acquires

and reconstructs frequency sparse signals via random time

sampling. Our fundamental resource is given in terms of bits

rather than in terms of measurements as is typical in CS lit-

erature. Our architecture is quite flexible in that it can intel-

ligently partition its bit budget to create either many coarsely

quantized measurements or a smaller number of high preci-

sion measurements. This allows our converter to effectively
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Fig. 3. Tradeoff between measurements and quantization for

a fixed bit budget B at various values of ISNR

diminish the effects of noise folding for real world CS appli-

cations.

The fundamental notion of steering the bit-constrained

sampling operator sampling operator to improve reconstruc-

tion performance is certainly noteworthy. It further raises

the question of whether other situations (possibly outside of

the domain of compressive sensing) exist where quantization

steering can provide tangible system benefits. Is it be possi-

ble to utilize some (possibly time evolving) side information

from the underlying signal to steer the sampling process and

improve the fidelity of our representation? Lastly, would any

achievable gains outweigh the cost of acquiring and utilizing

this side information?
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