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ABSTRACT 

This paper evaluates the impact of circuit impairments on 
the energy cost and performance limitations of analog-to-
information converters (AIC). In applications where signal 
frequencies are high, but information bandwidths are low, 
AICs have been proposed as a potential solution to 
overcome the resolution and performance limitations of 
sampling jitter in high-speed analog-to-digital converters 
(ADC). Although the AIC architecture facilitates slower 
ADCs, the signal encoding, typically realized with a mixer-
like circuit, still occurs at the Nyquist frequency of the input 
to avoid aliasing. We show that the jitter of this mixing stage 
limits the achievable AIC resolution. In this work, the 
end-to-end system evaluation framework is designed to 
analyze these limitations as well as the relative 
energy-efficiency of AICs versus ADCs across the 
resolution, receiver gain and signal sparsity. The evaluation 
shows that AICs improve the resolution by 1 bit when the 
signal of interest is very sparse, and enable 2x in energy 
savings when no pre-amplification is required. 

Index Terms— Analog-to-information converter (AIC), 
compressed sensing (CS), analog-to-digital converter (ADC) 

1. INTRODUCTION 

Cognitive radio has been proposed as an intelligent 
wireless communication system to improve the utilization of 
the available bandwidth [1]. In such a system, it is required 
to simultaneously observe the entire frequency spectrum to 
determine the location of used channels. A straightforward 
approach is to monitor the spectrum range of interest by 
simply utilizing a wideband, Nyquist rate high speed analog-
to-digital converter (ADC). A severe drawback is that ADCs 
working at such high frequencies (10’s of GS/s) require high 
power and have limited resolution [2], [3]. An alternative 
approach is to utilize an analog-to-information converter 
(AIC) based on compressed sensing (CS) techniques [4]. CS 
is a promising method for recovering sparse signals from 
fewer measurements than ordinarily used in Shannon’s 
sampling theorem [5]. Consequently, AICs can relax the 
frequency requirements of ADCs, potentially enabling 
higher resolution and/or lower power receiver front-ends.  

 
 
In this work, we analyze the energy/performance design 
space of AICs in an example cognitive radio environment 
with 1000 channels that span the 500MHz-20GHz frequency 
spectrum. In particular, we explore how jitter, which 
commonly limits ADC performance at high sampling rates, 
impacts the performance of the AIC system. As we will 
show, AICs can enable higher effective number of bits 
(ENOB) than Nyquist-rate ADCs for signals with low 
sparsity level, but may require higher power. This depends 
on the nature of the input signal and some other factors such 
as signal sparsity and the required amplifier gain.  

The remainder of the paper is as follows. Section 2 begins 
with a brief introduction to CS theory. Section 3 provides 
power models for implementation of AIC and high speed 
ADC systems. The mixer clocking jitter model is provided 
in Section 4. In Section 5, we describe the CS reconstruction 
and system evaluation framework that incorporates the noise 
and power models. Finally, Section 6 illustrates the energy 
and performance evaluation results.  

2. COMPRESSED SENSING BACKGROUND 

Signals are represented with varying levels of sparsity in 
different domains. For example, a single tone sine wave is 
either represented by a single frequency coefficient, or an 
infinite number of time-domain samples. Consider signals f 
represented as follows 

f x ,       (1) 
where x is the coefficient vector for f, which is expanded in 
the basis RNxN. When a signal is sparse most of its 
coefficients are zero, or they are small enough to be ignored 
without much perceptual loss. 
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Figure 1: Compressed sensing (CS) framework. 

5309978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012



The CS framework is shown in Fig. 1, where an 
N-dimensional input signal f is compressed to M 
measurements y, by taking M linear random projections, i.e. 

fy ,       (2) 

where Φ RMxN, f RNx1 and M < N. In this case the system 
is undetermined, which means there are infinite number of 
solutions for f. However, the signal is known a-priori to be 
sparse. Under certain conditions, the sparsest signal 
representation satisfying (2) can be shown to be unique.  

Furthermore, solving the following convex program 

1
min || ||

N
subject to

R lx
x y x ,       (3) 

can be shown to produce the sparsest solution [5]. 

3. SIGNAL AND POWER MODELS 

In this section, we provide power models used to evaluate 
the energy cost of both the high-speed ADC system and an 
implementation of the AIC system. The signal model  

1
( ) sin( )

N

j j
j

f t x t   (4) 

consists of user information coefficients, xj, riding on the 
carriers, j (in the range of 500MHz-20GHz), and emulates 
sparse narrowband or banded OFDM communication 
channels. Our sparsity assumption states that only S << N 
coefficients, xj, are non-zero, i.e. only S users are “active” at 
any one time. Figure 2(a) shows the block diagram of a 
typical AIC implementation [4]. In this architecture, the 
input signal f(t) is amplified by M amplifiers. Each signal 
branch is then individually mixed by a different 
pseudorandom number (PN) waveform i(t) to perform CS-
type random sampling. The mixer output is then integrated 
over a window of N Nyquist-rate sampling periods. Finally, 
the integrator outputs are sampled, quantized, and used to 
reconstruct the input signal. Figure 2(b) shows the same 
functionality implemented simply using an amplifier and an 
ADC operating at Nyquist-rate (with sampling rate N times 
that of ADCs in Fig. 2(a)).  

The potential advantages of using AICs in this context 
stem from having a different sensitivity to sources of jitter 
introduced by different control signals in the AIC system.   

In the AIC system in Fig. 2(a), the jitter error from sampling 
clocks on the slower ADCs is negligible, whereas the main 
source of error comes from the jitter in the PN waveform 
mixed with the input signal at the Nyquist frequency. In a 
Nyquist-rate ADC, Fig. 2(b), the main noise source is due to 
sampling jitter in the high-speed ADC clock. In the 
following, we explain the energy models adopted for the two 
systems. 

3.1. AIC System Power 

As described in [6], the total power, PAIC, of the AIC 
system in Fig. 2(a) can be summarized as 

2

2 2 2

int

2.

10
2

16

2
( ) ( )

3 2

DDA

DDA

p

AIC f

A

ENOB

ADCs egrators

ENOB

amplifiers

M V N CM
FOM

N

P BW
G NEF k T

M N
V q

2FOM
16N

iADCs egratorsint

V qDDAV qDDAV q

amplifiers

,  (5) 

where the following quantities, process dependent 
capacitance (Cp), absolute temperature (T), Boltzmann 
constant (k), elementary charge (q), signal bandwidth (BWf), 
amplifier noise efficiency factor (NEF), and ADC figure of 
merit (FOM), are all fixed parameters. The tunable 
parameters for the AIC system will be N, M, ENOB, and 
amplifier gain GA. Note that we set NEF=3 and 
FOM=100 fJ/conversion step, consistent with the general 
performance of state of the art low-noise amplifiers and 
moderate-rate ADCs [6].  

3.2. High Speed ADC System Power 

As described in [6], the total power of the high-speed 
ADC system can be summarized as 
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with the same constants defined in (5). For this evaluation, 
ENOB is the only tunable parameter for the ADC system, 
while FOMs of 0.5, 1 and 5 pJ/conversion step are used to 
represent a range of possible efficiencies for high-speed 
ADC designs. 

4. MIXER CLOCKING JITTER   
Figure 3 shows our jitter noise model where the noise is 

multiplied by the input signal and filtered in the integrator 
block. The i-th PN waveform i (t) satisfies: 

1

( ) ( )
N

i ij s
j

t p t jT      (7) 

where ij is the (i,j)-th PN element, and p(t) is a unit height 
pulse supported on –Ts/2 to Ts/2. Denoting the jittered PN 
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Figure 2: Block diagram of (a) an AIC system, and (b) a high-speed ADC 
system both with same functionality in the cognitive radio setting. 
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waveform as ˆ ( )i t , then: ˆ ( ) ( ) ( )i i it t N t . Here, Ni(t) is 
the jitter noise affecting ˆ ( )i t , described as : 

1

1
1

( ) ( )sgn( ) ( / 2)
N

i ij ij j j s s
j

N t p t jT T ,  (8)   

where the jitter width is ε  N(0, )  with   equal to the jitter 
rms, and p'j(t) is a unit amplitude pulse supported over the 
interval [min(0, εj), max(0, εj)]. In our model for Ni(t), the 
process ε is the same for all PN waveforms, because we 
assume the same PLL is used across all measurements. 
Therefore the model captures this spatial correlation.  

5. RECONSTRUCTION FRAMEWORK 

We now frame the reconstruction problem for the AIC 
within the CS framework described in Section 2. As shown 
in Fig. 2(a), each measurement, yi, is computed by 
integrating the sum of noise, ( ) ( ) ( )i in t f t N t , and the 
product of the signal, f(t), and PN waveform, i(t):  

/2 /2

/2 /2

( ) ( ) ( )
s s s s

s s
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i i i
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Substituting the signal model from (4), the measurements 
are oy x n , where PN matrix  has entries ij and 
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where 1 2( , ,..., )o o o T
Mn n non . Here, the jitter-induced noise 

i

on  
is merely the projection of f(t) by the i-th jitter noise pulse 
process Ni(t) (see Fig. 3).  

6. EVALUATION RESULTS 

In our signal model (4), we assume N=1000 possible 
subcarriers, and draw the S non-zero coefficient values, xi, 

from a uniform random source. To compare the performance 
of the ADC and AIC systems, we adopt the same ENOB 
metric from ADC literature, which can be defined as: 

2log ( )
12

swingV
ENOB

f - f
)

12
swing

f
  (11) 

where Vswing is the full-scale input voltage range of the ADCs 
and | f - f | is the rms signal distortion (use fQ in place of ff  
for the Nyquist-rate ADC in Fig. 2(b)). We next analyze the 
energy-efficiency of the two systems using (5) and (6). 

6.1 Jitter-limited ENOB 

The jitter-limited ENOB for both systems is plotted in 
Fig. 4. As sparsity level S increases, the ENOB performance 
of the AIC system worsens while the high-speed ADC 
system improves. The reasons for this are as follows. In the 
receiver, the input signal f(t) peaks are always normalized to 
Vswing, the full-scale voltage range of the ADC. When S 
increases, this normalization causes the coefficient values |xj| 
to get smaller with respect to Vswing. In ADCs, the jitter-error 
is dominated by the highest input frequencies, i.e. 
|f-fQ| |xjsin( jt) - xjsin( jt+ (t))| where (t) is the timing error 
caused by the jitter and j is large. The ENOB increases 
since Vswing/|f-fQ| increases with S (11). On the other hand, the 
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Figure 3: Ideal and jittered PN waveforms 
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Figure 4: Jitter (rms) versus ENOB for signal sparsity of (a) S = 1, 2, and 
(b) S = 5, 10, 12, (M = 100 for all S). 
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AIC system has a different behavior. As S increases, AIC 
distortion | f - f | gets worse, resulting in poorer ENOB 
performance. 

As shown in Fig. 4, the AIC system can improve the 
ENOB by 1 and 0.25 bits for a signal sparseness of 1 and 2, 
respectively. For signals with higher sparsity level S, the 
Nyquist ADC performs better than the AIC. Figure 4 also 
shows that compared to a standard Walden curve [3], in 
practice, the Nyquist ADC can achieve a better resolution 
because the input signal, f(t), does not always consist of the 
highest frequency in the available signal bandwidth. 

6.1 ENOB vs. Power 

The AIC system power, PAIC (5), is a function of the 
ENOB, M and amplifier gain GA. Figure 5 plots the power 
curves of both AIC and ADC systems vs. ENOB, for 
different M with GA=1. The AIC power flattens for ENOBs 
less than 9 since the power is dominated by the integrator 
power, which is independent of ENOB. For higher 
resolutions, the amplifier power, which is an exponential 
function of ENOB, becomes dominant in the AIC system. 
Figure 5 also shows that increasing M increases the AIC 
power as the number of components scale with the number 
of measurements. However, increasing M also improves the 
CS reconstruction, which results in higher ENOB in the AIC 
system. For example, when M = 100, an ENOB of 5-12 is 
achievable for input signals with sparsity level equal to or 
less than 11. Finally, note that the grayed areas in the plots 
show impractical regions due to chip thermal limits.  

As mentioned earlier, the total receiver gain must be set 
such that the input range of the ADC is accommodated. 
Hence, in addition to M, the amplifier gain GA is also 
considered to evaluate the energy efficiency of the AIC and 
Nyquist ADC systems. Figure 6 shows the power of both 
systems vs. ENOB for different values of GA when M=100. 
The AIC power increases due to an increase in amplifier 
power with GA. However, the Nyquist ADC power changes 
very little since the power of the single amplifier is not 
dominant. In general, the AIC system has lower energy cost 
only for applications that require low amplifier gain. 

7. CONCLUSION 

In this work, we compared the energy cost and 
performance limitations of AIC and Nyquist ADC systems 
in the context of cognitive radio applications where the input 
signal is sparse in the frequency domain. Although AICs 
have been proposed as a potential solution to overcome the 
resolution and performance limitations of sampling jitter in 
high-speed Nyquist ADCs, the jitter in the mixer stage of 
AICs, which also works at the Nyquist rate, is found to 
similarly limit the resolution of AICs. However, for 
applications where low amplifier gain is acceptable and the 
input signal is very sparse, AICs have the potential to 
improve resolution and enable roughly a 2x reduction in 
power. 
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Figure 5: Power for the required ENOB, GA=1. 
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Figure 6: Power for the required ENOB and different receiver gain 
requirements, M=100. 
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