
FPAA Empowering Cooperative Analog-Digital Signal Processing

Craig Schlottmann and Paul Hasler

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia

Email: cschlott@gatech.edu, phasler@ece.gatech.edu

Abstract—Large-scale field programmable analog array
(FPAA) ICs have made analog and analog-digital signal process-
ing techniques accessible to a much wider community. Given
this opportunity, we present in this paper a framework for
considering analog signal processing techniques for low-power,
portable systems. These techniques have become more important
given the recent recognition of the power-efficiency wall for
commercial digital ICs. The discussion focuses on the framework
technique required to enable analog-digital signal processing
techniques. A framework is needed to enable system designers to
directly develop applications into these approaches that includes
considering power consumed, system complexity/area, as well as
other commercial metrics. A key part of this discussion is evolving
existing Simulink FPAA design tools to work with this framework
such that users have a similar experience one expects with digital
system design, as well as model closely experimental data at a
high-level framework. The result of these techniques is pulling
analog computation towards the system level development as seen
in digital system design over the last 30 years.

I. ANALOG SIGNAL PROCESSING WITH FPAAS

Cooperative analog-digital signal processing (CADSP) is

the design approach whereby the two domains (analog and

digital) are used in combination to achieve advanced system

performance [1]. In traditional systems, analog processing

(ASP) is used primarily for front-end amplification and data

conversion, whereas digital processing (DSP) handles the

mathematical operations. By repartitioning the boundary be-

tween the processing domains, we stand to take advantage

of extreme power and area savings. For instance, the natural

physics of the subthreshold transistor can be used to perform

many mathematical operations with a fraction of the number

of devices required for digital computation [2] and a much

lower total current draw. In terms of MMACS/mW, we have

seen analog computers achieve a 10,000x increase in power

efficiency over their digital counterpart, a 20-year leap on the

Gene’s Law curve [3], [4].

It is the efficient balancing of the analog and digital domains

that the highest performance can be achieved. A popular subset

of this concept is the notion of digitally-enhanced analog sys-
tems, whereby digital processing is utilized to add resolution to

analog blocks [5]. As a broader approach, CADSP additionally

promotes the use of analog techniques to increase the power

efficiency of digital blocks, as illustrated in the system of

Fig 1. CADSP techniques have been successfully utilized in

compressive sensing [6] and classifier systems [7]. However,

two very important hurdles have prevented the wide-spread

use of analog computation: the lack of programmability and

the absence of robust design tools.

D/AA/D DSP

Analog Processor

Fig. 1: The analog processor embedded with a digital processor
provides a power efficient platform.

The recent development of large-scale field programmable

analog arrays (FPAAs) has provided a stable platform for

programmable analog systems [8]. The reconfigurable analog

signal processor (RASP) FPAA is a VLSI system that contains

hundreds of configurable analog blocks (CABs) and tens of

thousands of programmable floating-gate transistors (FG) in

a cross-bar switch matrix (SM). This flexible architecture

allows the user to program the FG switches in such a way as

to connect the analog components in any configuration. The

RASP FPAA has demonstrated such systems as low power

vector-matrix multiplier (VMM) [9] and OFDM system [10].

Trends in FPAA development are shown in Fig. 2.

The FPAA has provided the hardware platform to develop

ASP systems, but the remaining fundamental problem is that

it is not always easy for the typical DSP engineer to utilize

analog techniques. To solve this problem, we are developing

the design tools needed to empower the non-circuit designer

to take advantage of the FPAA hardware. We have chosen

MATLAB Simulink as the top level design space for analog

systems on FPAAs [11] in order to appeal to the broadest

audience of DSP engineers. Although this design space is in-

tuitive and makes systems easy to visualize and simulate, there

is still no established framework for the proper abstraction of

analog design. The development of a high-level framework

for abstracting analog design and creating behavioral analog

blocks is necessary to bridge the analog and digital design for

the system engineer.

The goal of this paper is to define such a standard analog ab-

straction method for the purposes of high-level system design.

There are several key challenges that must be overcome in

order to make analog design accessible to the system designer,

5301978-1-4673-0046-9/12/$26.00 ©2012 IEEE ICASSP 2012

R A SP 2.5
(2004)

2.9: Dynamic
R econfigurable (2010)

FPA A DD
(2010)R A SP 2.8

(2008)

Next Generation:
- Short Term Memory
- Integrated Processor

Integrated V ideo /
B aseband Comm
A pplications

A udio Processing
Image Processing
R obotic Computation

R obust Tool
Infrastruture
(Simulink to
 A utomatic Targeting)
Sensor Interfaces R econfigurable R adio

Single-Chip R emote nodes

R A SP 1.5
(2002)

B asic Filtering
Operatings Integrated

 Targeting
Classroom Use

Small A udio SP
algorithms
(i.e. beamforming)

R A SP 2.9 (2009)
 (5mm x 5mm)

F
PA

A
 a

p
p

ro
ac

h
es

E
n

ab
le

s
A

p
p

li
ca

ti
o

n
s

B aseband Comm
Data Conversion

- Tranceiver

(a) (b)

Fig. 2: High level viewpoint on Large-Scale FPAA devices. (a) Roadmap of the current and proposed GT FPAA IC development. Each
generation enabled another leap in potential computation and signal processing; we expect the next generation to have yet another dramatic
effect on the range of potential possible applications. Dates are when the device was first demonstrated; some devices are still in review. (b)
Plot of the Percentage of Control Path implemented versus Analog Parameter Density. Recent FPAA ICs, like the dynamically reconfigurable
FPAA or FPAADD device, begin to effectively maximize both parameters.

which we address in the remainder of this paper. Section II

covers the technique of analog abstraction and system-level

constraints. In Section III, we use a bottom-up example to

show how the circuit modeling procedures are deployed to

create a functional block. Lastly, we use Section IV for

concluding remarks.

II. ANALOG ABSTRACTION CONCEPTS

In this section, we describe several of the high-level design

choices that were made in creating the CADSP framework.

From choosing a top-level design space, to constraining the

interface between blocks, a well-planned framework facilitates

the design of large-scale systems.

A. Simulink/High-level

Simulink is used as the top-level design space for ana-

log signal processing in the RASP FPAA [12]. The use of

Simulink was important to us because it is already a familiar

tool to many DSP and control-system engineers. The intuitive

nature of high-level blocks with wires in between makes it easy

to design at the system-level. The Simulink tool has proven

to be an intuitive interface for graphical analog design and

has been used extensively in a graduate-level analog system

design course [13].

Simulink comes prepackaged with many libraries of com-

ponents, yet lacks high-level analog blocks. Therefore, we

needed to create our own libraries for custom ASP blocks.

The tool framework allows the analog engineer to easily add

new blocks to the analog libraries. The key with block design

is that the system should be modeled at the behavioral level,

so that it is easy for the system engineer to place into a larger

design. The ASP libraries promote the reuse of well-tested

circuits as well as the propagation of expertise.

The creation of high-level blocks introduces the question

of how much abstraction is required. If large mixed-mode

systems are to be simulated, we need to provide macromodels

for each analog block. Macromodels serve to reduce the

simulation time and may include options as to how many

second-order effects to include (such as noise and distortion).

Circuit abstraction also means that we should cover up the

detailed circuit parameters by fixing all of the static parameters

and presenting the user-defined parameters as they relate to the

system specifications.

B. Voltage mode systems

The first step in making analog design feel like digital

design is to define a standard protocol for the interface between

blocks. Digital design benefits from a very simple convention

of high and low voltages. Conversely, analog systems can

propagate information by means of small, large, voltage, or

current signals. In general, these operating domains create

advantages for analog systems. As illustrated in Fig. 3, current-

mode can easily sum signals, while voltage-mode can broad-

cast signals to many destinations. Although each domain has

its advantages, these choices are exactly what we want to

abstract away so that things are easy and familiar to the digital

designer.

At the expense of current-mode’s efficient summing, we

constrain the interface of our Simulink blocks to voltage-mode

operation. This constraint is more like traditional digital design

where a single block can fan out to many, but signals must be

summed through a device, not simply shorted. We can still take

full advantage of the current-mode analog processing inside

the block, but the interface is exclusively voltage.

The voltage-mode design methodology has implications on

the up-front design of each analog block. Many analog systems

have a native current-mode interface, in which case we will

embed conversion stages. The V/I or I/V stages can take

many forms, and the best choice will depend on the particular

application or specification. Within each block, we generally

characterize multiple conversion choices so that the user can

select the one they want based on the performance.

5302

Out1

1

vmm_wta

In_Vector Win_vector
VMM+WTA

 Classifier

encode

In_Vector Out_VectorEncoder

bpf_sos

In_Vector Out_Vector
Second−order

 section
In1

1

w11

V/I

WTA

w12 w13

w21 w22 w23

w31 w32 w33

E
n
co

d
er

n

log2(n)

BPF

BPF

BPF
diff, V

I

I

V

Currents Voltages

S
u
m

B
ro

ad
ca

st

S
in

g
le

 e
n
d
ed

D
if

fe
re

n
ti

al

2n 2n

..

.

..

.
M1

Mn

M1

Mn

Parallel Vectorized

n n
M

M

Simulink Block System

Fig. 3: The system abstraction involves defining our signal interface. We constrain the analog processing tool to use only voltage-mode lines
between blocks because it is more similar to digital design and fits into the Simulink framework. Vectorized signals are also important because
it takes advantage of the analog processor’s parallel processing capabilities. These properties are illustrated in the classifying system at the
bottom and built into high-level blocks to the right. Each block has a GUI where the functional parameters can be set without knowledge
of the underlying circuits and biases.

C. Vectorized signals

Frequently in DSP, and in particular when using MATLAB,

the lines between blocks are vectorized. This is common in

matrix operations where the inputs are all in parallel. We have

incorporated this vectorized net aspect into the analog tool

structure. Although a size of one is often sufficient, each net

can have any size vector dimension. Rather than forcing the

user to define every size, the signals are automatically scaled

based on the blocks that are used. For example, if an M ×N
VMM is instantiated, the input vector will automatically have

a size N, and the output will have size M.

Fig. 3 illustrates the use of differential along with single-

ended vectorized lines. Often in analog design, differential sig-

nals are used to increase SNR or cancel even-order harmonics.

To keep the design simple, single-ended or differential mode

can be selected inside a block as a parameter without changing

the complexity of the blocks in the design window.

D. Biasing

A major design element of analog systems is the proper

biasing of the blocks. This is a concept that is not manifest

in digital design, and therefore must be dealt with behind the

scenes.

The RASP line of FPAAs is built in a network of floating-

gate switch elements. This is a very useful element, as it can

also store bias values for computation (one of the reasons

such high computational density is achieved). The analog

designer can store the FG bias values inside the block, without

necessitating input for the end user. Often though, the bias

value is derived from a parameter in the system’s function.

For instance, in a GmC filter, the time constant is given by

a C/Gm relation. The Gm is set through the bias current

(Ib) of the OTA such that Gm = Ibκ/ (2UT). This simple

equation can be written into the block, so that the user only

needs to specify the time constant, and the correct bias will

be programmed.

III. SYSTEM EXAMPLE: OSCILLATOR CIRCUIT MODEL

We use the oscillator design in Fig. 4 as an example to

illustrate the high-level analog modeling. To begin the analog

design process, the user should look to the available elements

in the Simulink analog libraries. Two such libraries are shown:

Level 1 and Level 2.

The Level 1 library contains the high-level system blocks.

These blocks conform to the voltage-mode protocol and

contain sufficient abstraction so that they are reasonable to

simulate in Simulink.

The Level 2 library contains the low-level blocks, typically

mapping directly to FPAA CAB elements. These blocks do

not conform to the voltage-mode protocol and might have

advanced modeling parameters. These blocks are best used by

circuit-design engineers and should be simulated in a SPICE

environment.

Additional digital libraries are not shown in the figure,

but are acceptable for use in FPAA mixed-mode design. The

RASP FPAA is capable of compiling these digital circuits if an

accurate circuit model is attached to each block. Alternatively,

if proper FPAA ports are specified, mixed-mode designs can

be divided such that the entire system is simulated in Simulink

and only the analog portions are compiled to the FPAA.

To add a functional block to the Level 1 library, an analog

designer will start with the Level 2 blocks. A second-order-

section oscillator is shown in the bottom right of Fig. 4. This

system contains two FG-input OTAs, one OTA, two capacitors,

two ground connects, and one FG element to short the feed-

back path. This last element, the FG short, demonstrates one

difficulty in performing current-mode operations Simulink.

The feedback in this circuit mixes two currents and integrates

them on the left capacitor. Although mixing currents is a

5303

vdd_out

outvdd

tgate

in

sel
outT−gate

pfet

s

g
dpFET

nfet

g

s
dnFET

gnd_out

outgnd

cap

in outcap

OTAfg

Vin_p

Vin_n

I_outOTAfg

OTA

Vin_p

Vin_n

I_outOTA

vmm

in outVMM

filter

in outFilterbank

dac

in outDAC

classif

in out
VMM + WTA

 Classifier

awg

in outAWG

afft

in outAFFT

ocsillator

in outOscillator

Out1

1

swe1

in1

in2
FG

gnd_in1

in gnd

gnd_in

in gnd

cap1

in
ou

t

capcap

in
ou

t

cap

OTAfg1

Vin_p

Vin_n

I_outOTAfg

OTAfg

Vin_p

Vin_n

I_outOTAfg

OTA

Vin_p

Vin_n

I_out OTA

In1

1

Level 1

Level 2

- “Looks like Simulink”

- Easier simulation

- Simulation through

 SPICE

Fig. 4: To accommodate users with varying expertise, we provide multi-level libraries. The Level 1 library is meant for the highest level
blocks. These blocks will include functions with which a typical DSP engineer will feel comfortable designing, such as filterbanks, vector-
matrix multipliers, classifiers, analog FFT, DACs, and arbitrary waveform generators. The level 2 library contains the low-level blocks, such
as the FPAA CAB elements, and is meant for experienced circuit designers. The right side shows the design cycle of a second-order section
oscillator. The analog engineer designs with the Level 2 blocks, simulates with SPICE, tests on the FPAA, then creates a new Level 1 block.

common analog practice, Simulink operates in voltage mode

and cannot have two outputs drive a line. Therefore, we have

used a FG switch with two “inputs” to short the two nets. This

results in a legitimate circuit that will simulate in SPICE and

operate in silicon; it will not, however, simulate in Simulink.

To make this block useful to system designers, we abstract

it to the high-level block shown in the top right of the figure.

Here, we have expressed the eight-element circuit as a simple

second-order differential equation [2]. This equation is very

easy for Simulink to simulate. In this expression, the user

would specify the time constant (τ) and the Q. These system

parameters will be translated into physical parameters without

the user’s involvement. If we use equal capacitors and Gm

for the forward FG-OTAs, we get τ = C/Gm. With Gm

set, we get Q = 1/ (2 − GmFB/Gm), where GmFB is the

transconductance of the feedback OTA.

With the equation set, we just need to define the signal

dimension. There is no need to add any conversion stages

because this block is already voltage in and out. This block

can be arrayed by allowing the user to input two n-element

vectors, one for τ and Q. The block can automatically set its

input and output ports based on the size of the parameter array.

The resulting system will have n oscillator circuits in parallel,

each programmed with the elements of the parameter array.

IV. CONCLUSION

In this paper, we have addressed the major challenges

in developing an abstract analog system design framework.

We discussed the trade-offs involved in fixing the interface

mode between blocks, the conventions for vectorized nets, and

methods for automated biasing. We also illustrated the process

flow with a bottom-up example of an analog oscillator. With

the development of large-scale FPAAs, the size and complexity

of analog systems requires these high-level synthesis tools.

REFERENCES

[1] P. Hasler and D. Anderson, “Cooperative analog-digital signal process-
ing,” in IEEE ICASSP, 2002, pp. 3972 – 3975.

[2] Carver Mead, Analog VLSI and Neural Systems, Addison Wesley, 1989.
[3] P. Hasler, “Low-power programmable signal processing,” in Int.

Workshop on System-on-Chip for Real-Time Appl., 2005, pp. 413 – 418.
[4] G. Frantz, “Digital signal processor trends,” IEEE Micro, vol. 20, no.

6, pp. 52 – 59, 2000.
[5] B. Murmann, C. Vogel, and H. Koeppl, “Digitally enhanced analog

circuits: System aspects,” in IEEE ISCAS, 2008, pp. 560 – 563.
[6] R. Robucci, K. Leung, J. Gray, J. Romberg, P. Hasler, and D. Anderson,

“Compressive sensing on a cmos separable transform image sensor,” in
IEEE ICASSP, 2008, pp. 5125 – 5128.

[7] S. Peng et al., “A programmable analog radial-basis-function based
classifier,” in IEEE ICASSP, 2008, pp. 1425 – 1428.

[8] A. Basu et al., “A floating-gate-based field-programmable analog array,”
IEEE J. Solid-State Circuits, vol. 45, no. 9, pp. 1781 – 1794, 2010.

[9] C. Schlottmann and P. Hasler, “A highly dense, low power, pro-
grammable analog vector-matrix multiplier: The fpaa implementation,”
IEEE JETCAS, vol. 1, no. 3, pp. 403 – 411, 2011.

[10] S. Suh, A. Basu, C. Schlottmann, P. Hasler, and J. Barry, “Low-power
discrete fourier transform for ofdm: A programmable analog approach,”
IEEE Trans. Circuits Syst. I, vol. 58, pp. 290 – 298, 2011.

[11] C. Schlottmann et al., “A high-level simulink-based tool for fpaa
configuration,” IEEE TVLSI, vol. 20, no. 1, pp. 10 – 18, 2012.

[12] C. Schlottmann, C. Petre, and P. Hasler, “A high-level simulink-based
tool for fpaa configuration,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 20, no. 1, pp. 10 – 18, 2012.

[13] P. Hasler, C. Schlottmann, and S. Koziol, “Fpaa chips and tools as the
center of an design-based analog systems education,” in IEEE Int. Conf.
Microelectronic Systems Education (MSE), 2011, pp. 47 – 51.

5304

