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Abstract—The design of a communications system is typically most effective
only when each of its components can be accurately represented by a discrete,
symbolic behavioural abstraction. Such abstractions, in addition to providing
valuable design intuition, also enable highly efficient and scalable system-level
simulation. However, given a SPICE-level description for a subsystem such as
a latch, it is a challenge to come up with a discrete, symbol-level abstraction
that accurately captures its continuous-time dynamics. Indeed, the manual
construction of such an abstraction requires deep knowledge and understanding
of the operation of the module in question; moreover, it is very time-consuming,
tedious, error-prone and not easily scalable to larger designs.

In recent work [1], we adapted methods from computational learning theory
to develop an automated technique, DAE2FSM, that produces binary finite
state machine (FSM) abstractions of non-linear analog/mixed-signal (AMS)
circuits. In the present paper, we demonstrate the application of the DAE2FSM
technique to automatically derive FSM abstractions for a mixed-signal com-
munications circuit component, namely a current mode latch (CML) designed
in IBM’s 90nm LP process technology. We show that the FSMs learned by
DAE2FSM not only capture the essence of the latch’s behaviour during normal
conditions, but also faithfully mimic its behaviour under adverse operating
conditions (e.g., under lowered supply voltages). Moreover, in addition to a
stand-alone CML, we also generate FSMs for cascades of two and three
latches (such topologies are used in the design of power-efficient, bit-error
optimised analog-to-digital converters). In spite of the inherent non-linearity of
such systems, and in spite of the pronounced “analog-ness” of the waveforms
in question, our FSM abstractions are able to produce discrete-time symbol
sequences that closely match the data points obtained by sampling from
continuous-time SPICE simulations.

I. INTRODUCTION

Analog/Mixed-Signal (AMS) modules play a crucial role in today’s high-
speed (i.e., several Gb/s), low power, bit-error optimised digital communi-
cation systems. In particular, for delivering high performance at low power,
one needs to impose stringent design constraints on AMS modules such
as the analog-to-digital converters (ADCs) and digital-to-analog converters
(DACs) that make up the front and back ends of high-speed communication
links. Most other modules in a digital communications system can be
analysed/simulated very efficiently; either they are continuous-time linear
systems (e.g., anti-aliasing filters), or they can be accurately described by
convenient discrete-time abstractions (e.g., FIR/IIR filters, FFT modules).
By contrast, the AMS blocks in the design pose a significant challenge
both for analysis and for system-level simulation: these subsystems are
highly non-linear, and it is also not straight-forward to derive discrete-
time abstractions that accurately capture the rich set of continuous-time
dynamics exhibited by these subsystems. Accordingly, this paper presents
a fully automated technique, DAE2FSM, that is able to generate discrete,
symbol-level abstractions (in the form of finite state machines, or FSMs)
for AMS blocks used in high-speed communication systems.

Fig. 1. Role of an AMS block (i.e., an ADC) in an RF receiver.

To set the context of this paper in more concrete terms, Fig. 1 (a) shows a
block diagram of the front end of an RF receiver. As the figure shows, the
ADC represents the first major module through which any received signal
has to pass, well before any digital processing can even begin. Thus, the

ADC’s performance has a strong bearing on the performance of the entire
communication link. Fig. 1 (b) shows an abstract model for how the ADC is
supposed to function: the incoming signal x(t) is first sampled at a suitable
frequency 1/T (which is at the Nyquist rate or higher), and the sampled
analog sequence is then quantized to discrete levels, which results in the
output sequence x[n].

Fig. 2. Schematic of a bit-error optimised flash ADC.

Fig. 2 shows a schematic design of a low power flash ADC suitable
for use in high-speed communication links [2]. As is typical in a flash
ADC, the input signal x(t) is compared against N quantization thresholds
{q1,q2, . . . ,qN}. This is accomplished with N pre-amplifiers, each of whose
outputs is then passed through a cascade of latches. The first latch in each
of these cascades is a current mode latch (please see Fig. 6 (a) for a circuit
diagram), and all subsequent latches are CMOS latches.

The basic structural and functional unit in the above ADC topology is
a cascade of latches. To design the ADC, therefore, it is necessary to
develop an in-depth understanding of how a latch cascade works, both
under ideal and non-ideal operating conditions. However, there are several
difficulties in analysing and simulating the behaviour of such a cascade.
Firstly, each latch exhibits non-ideal behaviour characterised by minimum
setup times and hold times. Secondly, each latch is subject to minimum
and maximum “clock-to-Q” delays that may affect subsequent latches in
the cascade. Thirdly, each latch exhibits a region of metastability that has
to be carefully designed around. Fourthly, the impact of initial conditions,
parameter variability and supply voltage variability can adversely affect
the performance of both individual latches and the cascade as a whole.
Therefore, for purposes of system-level analysis and symbol-level simula-
tion, one needs to develop a discrete-time model that accurately captures
this entire spectrum of complex, continuous-time dynamics exhibited by a
cascade of latches.

Of course, an ideal latch can be described by a simple functional ab-
straction: it thresholds its input into a binary output when the clock is
high, and retains its previous value when the clock is low. However, such
an abstraction is too simplistic for today’s nanoscale latches; it does not
capture the effects of setup time, hold time, latch delays, metastability,
sensitivity to parameter/supply voltage variability, etc. In actual design,
these are the key considerations that can make or break an ADC.

On the other hand, one could use full-blown SPICE-level simulation with
sophisticated transistor-level models (e.g., BSIM3, BSIM4) to capture the
complete range of possible latch behaviours, including the above effects.
However, for designs of moderate to large size, this can be so time-
consuming and inefficient that it becomes completely impractical. Also,
SPICE-level simulations cannot directly be used for higher level analysis
(e.g., they do not provide intuition about system behaviour at the level of
discrete communication symbols), and therefore cannot be integrated easily
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into a symbol-level simulation framework.

In this paper, we apply a recent technique, DAE2FSM [1], to produce
an intermediate level of abstraction for latches that, (a) captures a richer
set of dynamics than ideal latch models, and (b) simultaneously delivers
better intuitive understanding and greater simulation efficiency compared to
overly complex SPICE-level models. We use finite state machines (FSMs)
for such an intermediate level of abstraction. In §II, we provide a brief
description of DAE2FSM. In §III and §IV, we describe applications of
DAE2FSM to latches and latch cascades within a communication link.

II. THE CORE TECHNIQUE: DAE2FSM

Fig. 3 below illustrates the high-level architecture behind DAE2FSM [1],
our automated technique to generate symbol-level FSM abstractions for
AMS circuits (such as latches and cascades of latches). As the figure shows,
DAE2FSM takes as input (a) an analog circuit (such as a current mode
latch) described as a SPICE netlist, and (b) a SPICE simulator such as
SPECTRE that has access to process parameters of the circuit.

Fig. 3. The architecture behind DAE2FSM. Software modules/CAD techniques
are shown in rectangular boxes, and data interchanges between modules are shown
in circular boxes. The components making up the core DAE2FSM engine (i.e., the
output analyzer, the equivalence checker, and the input generator) are indicated in
blue font, while external dependencies (e.g., SPECTRE) are shown in black font.

DAE2FSM works by issuing multiple calls to the SPICE simulator, each
time requesting the circuit’s output waveform for a specific input waveform.
These input waveforms are produced by a carefully crafted input generator,
one of whose goals is to minimise the total number of SPICE runs required.
Every output waveform returned by the simulator is processed by an output
analyzer, which tries to learn the circuit’s behaviour from the input/output
traces collected thus far. The output analyzer can also issue specific queries
to the input generator, which are taken into account while generating the
next input waveform for the simulator. Eventually, the output analyzer
learns enough about the circuit to propose a candidate FSM abstraction,
which is passed to an equivalence checker. The equivalence checker then
attempts to generate, either deterministically or probabilistically, a counter
example to show that the candidate FSM does not accurately reflect the
given circuit’s behaviour. If such a counter example is found, the output
analyzer uses it to refine its guess about the FSM. If no such counter
example is found, the candidate FSM is taken to be a realistic abstraction
for the given circuit, and the algorithm terminates.

The core technique behind DAE2FSM is a well-known algorithm from
the field of computational learning theory, namely Angluin’s algorithm [3].
In previous work [1], we have shown how Angluin’s algorithm can be
modified to produce binary FSM abstractions for AMS circuits, where the
input and output alphabets are restricted to two level signals. For this work,
we have re-architected the internal structure of DAE2FSM, and completely
re-written the code from scratch. This resulted in several improvements
over the original version: (a) much faster runtimes1, (b) an improved output
analyzer, and (c) applicability to real-world designs, including a current
mode latch (CML) and a cascade of latches designed for IBM’s 90nm LP
process technology [2].

1All the FSMs in this paper have been generated by DAE2FSM within 5 minutes
of execution time on a 2.4GHz laptop computer with 2GB of memory.

Due to space constraints, we do not describe these technical improvements
in detail here, but move on to present the results obtained by running
DAE2FSM on the latches mentioned above.

III. DAE2FSM APPLIED TO A CML

Fig. 6 (a) shows the circuit diagram of a CML. As mentioned in the
introduction, the CML constitutes the first stage in a cascade of latches
that forms the basic structural and functional unit of a low-power ADC in
a high-speed communication link.

The CML used in this paper has been designed in IBM’s 90nm LP process
technology, fabricated and tested in the context of a 1.2V, 6Gb/s commu-
nication link that employs a flash ADC [2]. We now present the results
obtained by applying DAE2FSM to automatically generate FSM abstrac-
tions of this CML for a range of supply voltages VDD = {0.8V,1.0V,1.2V}.
(Although the CML has been designed only for a 1.2V supply voltage, we
deliberately lowered the supply voltage to generate FSMs that capture the
latch’s behaviour under non-ideal operating conditions.)

Before applying DAE2FSM, we first need to map the FSM’s symbolic 0/1
inputs and outputs to actual voltage levels exhibited by the circuit. For
the FSM inputs, this choice is straightforward: the 0 and 1 inputs to the
FSM correspond to circuit inputs of −VDD and +VDD volts respectively.
The choice of output levels is a little more complicated: the 0 and 1 FSM
output levels have to correspond to the minimum and maximum differential
outputs produced by the circuit, sampled at some chosen instant of the
clock cycle (in general, these are different from −VDD and +VDD volts).
This leads to another choice; we need to determine a set of evenly spaced
points at which to sample the input and output sequences (because the
FSM corresponds to a discrete time representation). In this paper, we have
selected two natural candidates for such sampling instances, namely the
positive and negative edges of each clock cycle.

Having fixed the input/output levels and the sampling instance, the objec-
tive now is to generate an FSM that satisfies what we call a fundamental
test: for any given input sequence (comprising a string of 0s and 1s),
the output sequence predicted by the FSM should tally closely with the
(sampled) output sequence obtained by SPICE simulation of the circuit
on a similar input sequence. For example, suppose we have a negative-
edge sampled FSM whose output levels 0 and 1 correspond to circuit
(differential) outputs of -0.3V and +0.6V respectively. And suppose this
FSM predicts that the input sequence [0, 1, 1, 0] will result in the output
sequence [1, 0, 1, 1]. Then, a SPICE simulation of the circuit on a
corresponding input (i.e., an input that is -VDD volts for the first clock
cycle, VDD volts for the second and third clock cycles, and −VDD volts
again for the fourth clock cycle) should result in an output, whose samples
(taken at the negative edge of 4 consecutive clock cycles) should be closely
approximated by 0.6V, −0.3V, 0.6V, and 0.6V. If this fundamental test
holds for every input sequence, then the generated FSM is considered a
sufficiently faithful abstraction of the original circuit.

Fig. 4. FSM abstractions automatically generated by DAE2FSM for the CML, and
for cascades of two and three latches, operating under VDD = 0.8V, 1.0V, and 1.2V.
For more details, please see Fig. 5.
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Circuit VDD (volts) Sampling instant Learned FSM FSM input levels FSM output levels

Single CML

1.2
-ve clock edge M1 [0,1]≡ [−1.2V,+1.2V] [0,1]≡ [−0.28V,+0.28V]
+ve clock edge M2 [0,1]≡ [−1.2V,+1.2V] [0,1]≡ [−0.67V,+0.67V]

1.0
-ve clock edge M1 [0,1]≡ [−1.0V,+1.0V] [0,1]≡ [−0.24V,+0.24V]
+ve clock edge M2 [0,1]≡ [−1.0V,+1.0V] [0,1]≡ [−0.56V,+0.56V]

0.8
-ve clock edge M1 [0,1]≡ [−0.8V,+0.8V] [0,1]≡ [−0.18V,+0.18V]
+ve clock edge M2 [0,1]≡ [−0.8V,+0.8V] [0,1]≡ [−0.40V,+0.40V]

Cascade of 2 latches

1.2
-ve clock edge M2 [0,1]≡ [−1.2V,+1.2V] [0,1]≡ [−1.2V,+1.2V]
+ve clock edge M2 [0,1]≡ [−1.2V,+1.2V] [0,1]≡ [−0.18V,+0.18V]

1.0
-ve clock edge M2 [0,1]≡ [−1.0V,+1.0V] [0,1]≡ [−0.99V,+0.99V]
+ve clock edge M3 [0,1]≡ [−1.0V,+1.0V] [0,1]≡ [−0.09V,+0.09V]

0.8
-ve clock edge M4 [0,1]≡ [−0.8V,+0.8V] [0,1]≡ [−0.15V,+0.15V]
+ve clock edge M3 [0,1]≡ [−0.8V,+0.8V] [0,1]≡ [−0.05V,+0.05V]

Cascade of 3 latches

1.2
-ve clock edge M2 [0,1]≡ [−1.2V,+1.2V] [0,1]≡ [−0.24V,+0.24V]
+ve clock edge M5 [0,1]≡ [−1.2V,+1.2V] [0,1]≡ [−0.81V,+0.81V]

1.0
-ve clock edge M2 [0,1]≡ [−1.0V,+1.0V] [0,1]≡ [−0.16V,+0.16V]
+ve clock edge M5 [0,1]≡ [−1.0V,+1.0V] [0,1]≡ [−0.75V,+0.74V]

0.8
-ve clock edge M3 [0,1]≡ [−0.8V,+0.8V] [0,1]≡ [−0.12V,−0.09V]
+ve clock edge M3 [0,1]≡ [−0.8V,+0.8V] [0,1]≡ [−0.55V,−0.35V]

Fig. 5. Details about the FSM abstractions generated by DAE2FSM for a single CML, and cascades of two and three latches, operating under 3 different supply voltages:
1.2V, 1.0V and 0.8V. This table refers to FSMs M1 to M5 shown in Fig. 4. The FSMs have been automatically generated for two different sampling instances (at the +ve
and -ve clock edges). The last two columns of this table provide a mapping between the 0/1 FSM I/O symbols and actual voltages in the circuit.

Fig. 4 and Fig. 5 provide details about the FSM abstractions automatically
generated by DAE2FSM for the output differential (V+

out −V−
out) of the

CML, for three different supply voltages (0.8V, 1.0V and 1.2V). This CML
is positive-edge triggered, i.e., it has been designed to sample the input
when the clock is high, and amplify its previous value when the clock is
low. Therefore, ideally, the output sequence sampled at the negative edge of
the clock should be the same as the input sequence (corresponding to FSM
M1), whereas the output sequence sampled at the positive edge of the clock
should be the input sequence delayed by one clock cycle (corresponding
to FSM M2). Indeed, from Fig. 5, we find that this is exactly the case for
all values of VDD that we tested. However, it is observed from Fig. 5 that
as VDD is lowered, the voltage difference between the FSM output levels
0 and 1 keeps shrinking, making the latch’s state more difficult to resolve
at lower supply voltages.

Fig. 7. Clock (black) and input (blue, green) waveforms applied to a CML, a
2-latch cascade and a 3-latch cascade for generating the output waveforms of Fig. 6.
The vertical, dashed red (brown) lines represent the negative (positive) clock edges
(where the FSM input/output sequences are sampled).

Finally, we would like to show that the learned FSMs are indeed a faithful
abstraction of the original circuit. For this, we demonstrate that the learned
FSMs all pass the fundamental test (described above) for two example input
sequences, namely [0, 1, 1, 1, 0, 1, 0, 0] and [1, 0, 0, 1, 1, 0, 1, 0].2

2We have verified that the FSMs pass the fundamental test for not only these
particular input sequences, but for every possible input sequence of length 8 and
below.

Fig. 7 shows the (analog) clock and input waveforms that correspond to
these particular input sequences. The responses produced by the circuit for
these input sequences are shown in the first column of Fig. 6 (i.e., plots (b)
to (d)). These plots include the response obtained by SPICE simulation (the
blue and green waveforms), as well as the response predicted by the FSM
simulation (the black waveforms with magenta markers). From the plots,
it is clear that: regardless of supply voltage, the output sequence samples
always lie close to the predictions made by the FSM simulation. This
testifies to the accuracy of the FSM abstraction.

IV. DAE2FSM APPLIED TO CASCADES OF LATCHES

We now apply DAE2FSM to cascades of two and three latches. Just as
we treated the single latch case, we used DAE2FSM to generate FSM
abstractions for two (and three) latch cascades operating under a range of
supply voltages. The FSMs so generated are presented in Fig. 4 and Fig. 5
respectively.

Let us first consider the two latch cascade (please refer to Fig. 6 (e) for a
circuit schematic). At VDD = 1.2V, we find from Fig. 5 that the two-latch
cascade behaves as an ideal delay unit (corresponding to FSM M2 for
both negative and positive edge sampling). However, as VDD gets lowered,
the system’s behaviour becomes non-ideal: for VDD = 1.0V and below, the
positive edge sampled FSM (M3) becomes severely limited in the its output
swing, to the point that the only symbol it can output is 0, regardless of
input. Even the negative edge sampled FSM (M4) becomes non-ideal at
VDD = 0.8V: this FSM indicates that, for the latch cascade to produce a 1
at the output, at least two consecutive 1s are needed at the input, whereas
to produce a 0, it is enough if the input has a single 0. In other words, the
transmission of a 1 from the cascade’s input to its output has been slowed
down significantly.

Similar to the single CML case, the second column in Fig. 6 (i.e., plots (f)
to (h)) shows the results obtained by running both SPICE and FSM
simulations of the two latch cascade on the inputs of Fig. 7. As before,
we see that the generated FSMs, across supply voltages, all pass the
fundamental test for these particular input sequences (additionally, we have
verified this for every input sequence of length 8 and below).

We now turn to the results obtained for a three latch cascade (whose circuit
schematic is shown in Fig. 6 (j)). Fig. 5 shows that even at VDD = 1.2V,
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Fig. 6. Plots obtained by simulating a CML (first column), and cascades of 2 and 3 latches (second and third columns respectively), on two input sequences ([0 1 1 1 0 1 0 0]
and [1 0 0 1 1 0 1 0]), for VDD values 0.8V, 1.0V and 1.2V. Each plot shows the differential voltage at the circuit’s output (for both these input sequences) obtained from
SPICE simulations (the solid blue and green curves) as well as the output sequences predicted by FSM simulations (the dashed black curves with magenta markers). The
vertical red and brown dashed lines show two different sets of FSM sampling instances, i.e., the negative and positive edges of each clock cycle respectively. It is seen
that, for every simulation, in spite of the pronounced “analog-ness” of the SPICE waveforms, the analog output samples always lie close to the values predicted by the
FSM abstraction at the sampling instances.

the positive edge sampled FSM (M5) is non-ideal; it represents a delay
unit with a very slow response, i.e., to guarantee a 0 (1) at the output,
the input must contain at least two consecutive 0s (1s). In other words,
both 0 and 1 propagate through the cascade very slowly. And as VDD gets
further reduced to 0.8V, the reduction in output swing is so dramatic that
the cascade becomes capable of producing only one output symbol (0),
regardless of the input (corresponding to FSM M3).

As before, we can verify from the third column of Fig. 6 (i.e., plots (k)
to (m)) that the generated FSMs all pass the fundamental test for the inputs
in Fig. 7. Additionally, we have verified this for every input sequence of
length 8 and below.

V. SUMMARY AND CONCLUSIONS

To summarise, we have demonstrated DAE2FSM, a fully automated tech-
nique to generate symbol-level FSM abstractions for latches (and cascades
of latches) used in high-speed communication systems. Our technique

is able to produce FSMs that offer (a) considerable intuition about the
behaviour/dynamics of the latch/cascade in question, both under ideal
and non-ideal operating conditions, and (b) dramatic improvements over
SPICE in the context of simulation efficiency (while a SPICE simulation
could take days, a comparable FSM simulation would take mere seconds).
Therefore, we believe that our technique holds significant promise in the
context of system-level analysis and symbol-level simulation of high-speed
communication systems.
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