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ABSTRACT 

Advanced devices for embedded and ambient applications 
represent one of the most compelling classes of electronic systems, 
but they also impose more severe constraints on system resources 
than ever before. Although platform non-idealities have always 
posed a fundamental limitation, the overheads of conventional 
margining are now reaching intolerable levels. We describe an 
alternate approach to hardware resilience that applies to 
applications where advanced modeling and inference capabilities 
are required, a rapidly increasing emphasis in many applications. 
We show how a data-driven modeling framework for analyzing 
application data can also be used to effectively model and 
overcome a broad range of hardware non-idealities. Specific 
examples for biomedical sensors are shown that are able to retain 
performance with minimal on-line overhead despite the presence 
of severe digital- and analog-circuit non-idealities.        
 

Index Terms- Hardware resilience, machine learning, stochastic 
computation, digitally-assisted analog, biomedical devices. 

I. INTRODUCTION 
Non-ideal behavior of hardware has always been one of the 
fundamental limitations in electronic systems. The sources of such 
behavior have been extremely diverse, ranging from imperfect 
control of transistor processing, to explicit faults in manufacturing, 
to dependencies on aging and environmental factors. A key 
challenge is that the circuit- and system-level manifestations have 
been equally diverse. Although methods have been adopted for 
handling these, they have relied heavily on various forms of 
margining that have, in turn, meant sacrificing critical system-
level resources. For example, precision analog instrumentation 
has relied on stabilizing closed-loop topologies with high gain, 
leading to high power consumption [1]; high- and medium-
resolution data conversion has required precise matching of 
components, increasing both area and power [2]; variation, 
affecting the noise margins of digital logic and memory, has 
required setting the supply and threshold voltages at values 
considerably off the minimum-energy point [3]; and defects in 
nano-scale lithography have limited the scaling of technology 
features [4]. 

While margining has traditionally been viable in electronic 
systems, some of the most compelling emerging applications face 
more severe constrictions on system resources (energy, size, etc.) 
than ever before and simultaneously exacerbate the sources of 
hardware non-idealities. The overhead of conventional margining 
is thus reaching intolerable levels [5]. The search for alternate 
approaches to hardware resilience has consequently become one 
of the most important focus areas, mandating technology-level 
solutions in the ITRS [6] as well as all methods of circuit-level 
solutions.   

In this paper, we present an approach for overcoming 
hardware non-idealities using data-driven modeling methods in 

applications that require classification of data. Data-driven 
hardware resilience (DDHR) has the potential to handle severe 
manifestations from a wide possibility of sources, ranging from 
imperfect device and component characteristics to explicit 
manufacturing faults. The approach is based on the observation 
that, with the increasing importance of recognition, mining, and 
synthesis applications [7], there is a growing need to enable 
advanced inference capabilities in electronic systems. The idea is 
that, in addition to analyzing application data, these capabilities 
can be exploited to model and overcome the manifestations of 
static non-idealities that affecting the hardware. Although the 
manifestations can be severe and nearly impossible to predict a 
priori, we demonstrate that they can potentially be overcome via 
data-driven modeling through a supervised machine-learning 
framework. We illustrate the approach on four types of non-
idealities: (1) bit errors in a memory, (2) switching (stuck-at) 
faults in digital logic, (3) gain non-linearity in an instrumentation 
amplifier, and (4) integral non-linearity (INL) in an ADC.     

II. BACKGROUND 
Approaches have emerged that exploit system- and architecture-
level frameworks for overcoming non-idealities potentially much 
more efficiently than conventional margining. Several strong 
examples exist of analog circuits that take advantage of digital 
assists in mixed-signal architectures [8]. For example, modeling 
methods, though applied to a specific non-ideality, have already 
demonstrated the possibility of substantial linearity improvement 
in an ADC [9]. As another example, closed-loop calibration of the 
discrete values possible in a digital modulator have allowed RF 
transmitters to overcome power-amplifier non-linearities [10].    

For digital circuits, approaches have emerged that avoid 
severe margining overheads by permitting errors and then 
employing error detection and correction through enhancements at 
the micro-architecture level of a processor pipeline [11]. 
Alternatively, approaches, termed stochastic computation [12] 
mitigate hardware overheads by exploiting error tolerance 
according to application-level metrics (e.g., using differing error 
characteristics in redundant estimators or soft-voters to reduce the 
likelihood of severe output errors). Programmable architectures 
have also been demonstrated that explicitly retain error-free 
control flow through reliable cores while employing relaxed-
reliability cores for computation [13]. 

The approach presented next leverages the powerful data-
driven modeling capabilities enabled by machine-learning 
methods as a generic way to overcome the manifestations of 
digital and analog non-idealities. The demonstrations suggest that 
errors with potentially large and highly irregular distributions can 
be handled effectively.                   

III. OVERVIEW OF DATA-DRIVEN HARDWARE 
RESILIENCE (DDHR) 

Data-driven modeling implies the use of data from the application 
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to construct a model. From this, a decision function can then be 
derived to perform inference. The approach of DDHR involves 
forming the model using data that has been processed by the 
platform and that is thus explicitly affected by the non-idealities 
of concern. Consequently, DDHR depends strongly on the 
effectiveness with which the manifestations, which may be 
physically complex, can be modeled through training. This 
implies that the error sources must be static. A key to the 
approach is the use of powerful modeling capabilities offered by 
supervised machine-learning methods. It is worth noting, that 
these methods have begun to be incorporated in energy-
constrained devices for advanced signal analysis [14, 15]. 

Fig. 1 illustrates the DDHR concept using a support vector 
machine (SVM) for binary classification in a sensing device. 
SVMs are a popular and versatile machine-learning framework for 
modeling and classification [16]. They analyze data segments by 
deriving features and representing these as a vector. Feature 
vectors that have been annotated with class labels form a training 
set, and instances, called the support vectors, are selected to 
model the data and compute a decision function for real-time 
classification. A typical decision function, called the radial basis 
function (RBF) is shown in Eq. 1 ( x  represents a feature vector 

of the input signal, isv  represent the support vectors, K(•) is a 

transformation function, and , i, yi, b are training parameters): 
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Fig. 1: Illustration of DDHR concept. Temporary systems for modeling 
and labeling generate an error-aware model from error-affected training 
data. The error-aware model is then used by a classifier. 

With DDHR, the idea is to derive a training set from feature 
vectors that are obtained via the non-ideal hardware. This results 
in an error-aware model. The model is then applied using an 
error-free classification kernel; while ensuring error-free 
classification incurs the conventional overhead, this can be offset 
by employing specialized classifier optimizations [17, 18], thus 
allowing non-idealities in all preceding stages to potentially be 
handled efficiently and generically.      

If the error sources are static, suitable error-affected data to 
construct the model is readily obtained by processing data through 
the device. In addition, however, proper class labeling of the 
training-set feature vectors is also required. This can be achieved 
via an expert (in particular, by using active-learning methods [19] 
to substantially reduce the labeling effort), or it can be achieved 
automatically by using a temporary error-free auxiliary system to 
derive the labels (in fact, a low error-mode may be available 
within the existing system, for instance, by temporarily increasing 
the supply voltage in a low-voltage device); this approach has 
shown nearly identical performance to an error-aware system 
based on perfect, expert labeling [20]. 

Fig. 2 shows the concept of the error-aware model in an 
actual application using real data. Initially, the decision function 
based on the support-vector model is derived from the variances 
of the physical signal (Fig. 2a). In the presence of hardware errors, 

however, the distribution of the feature vectors is altered (Fig. 2b). 
Training using an error-affected dataset leads to the error-aware 
model. Fig. 3 shows histograms of the decision function 
computation (Eq. 1). While the baseline detector (with no errors) 
can reliably discriminate between the classes, the errors degrade 
the separation achievable. With the error-aware model, however, 
the separation between the outputs is effectively restored. 
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Fig. 2: EEG-signal feature data for a seizure detector (plotted in 2D using 
principle component analysis) to show (a) the error-free distribution and 
(b) the distribution after introducing errors (in 20% of the memory cells).  
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Fig. 3: Histograms of the decision-function output for a seizure detector 
(a) without errors (baseline), (b) with memory errors, and (c) with errors, 
but using an error-aware model. 

It is worthwhile to note that the performance of an SVM has 
been shown to degrade gracefully in the presence of low-level 
feature-vector noise. For instance, Fig. 4 shows the performance 
as white noise with increasing PSD is applied to the input signal. 
With low-level bit errors, some degree of resilience is thus 
retained even without an error-aware model [21]. In general, 
however, errors induced by hardware non-idealities cannot be 
assumed to affect only low-order bits (as will be shown in the 
distributions of Section IV).  

 
Fig. 4: Performance degradation of an SVM is initially graceful when 
white Gaussian noise is applied to the input EEG signal of a seizure 
detector (noise power is normalized to the signal power). 

IV. DEMONSTRATIONS 
In this section, we demonstrate the DDHR approach through the 
use of two biomedical monitoring applications that utilize real 
clinical data. Biomedical detectors are representative of advanced 
sensing applications in that they perform analysis over physically-
complex signals; the application signals thus motivate the need for 
data-driven methods [22]. The applications considered are (1) 
epileptic seizure detection based on 18-channel 
electroencephalogram (EEG) sensing [23] and (2) cardiac 
arrhythmia detection based on electrocardiogram (ECG) sensing 
[24]. Data is obtained from the MIT-BIH [25] and CHB-MIT [25, 
26] databases, respectively. Block diagrams of the detectors are 
shown in Fig. 5, illustrating the feature computations involved.  
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Fig. 5: Block diagrams for (a) seizure detector (one EEG channel shown; 
up to 18 channels can be used) and (b) arrhythmia detector. 

The results below consider digital and analog circuits. The 
digital faults are (A) bit-cell errors in a memory and (B) switching 
errors in logic gates (stuck-at faults), both of which represent 
prominent error sources in low-energy designs [3]. The analog 
non-idealities are (C) gain non-linearity in an instrumentation 
amplifier and (D) integral non-linearity (INL) in an ADC, which 
are common data-acquisition errors. The performance is evaluated 
via the detector’s true-positive (TP) and true-negative (TN) rates, 
which must both be high, and the false-positive (FP) and false-
negative (FN) rates, which must both be low (though all four 
metrics are examined, results are provided for only the ones where 
degradations are observed). For all cases, the baseline classifier 
model (no error-aware) is constructed from a feature-vector 
training set derived from the nominal processing of Fig. 5; the 
error-aware model is constructed from a feature-vector training set 
derived from the error-affected implementations described below.   
A. Memory Bit-cell Errors 
The feature computation blocks are implemented in Verilog and 
synthesized to a gate-level netlist. The filter coefficients are 
assumed to be stored in memory. To inject bit errors, bits are 
selected at random and their values are flipped. The TP and TN 
rates for the seizure and arrhythmia detectors are shown in Fig. 6 
with respect to increasing fault injection rate (the resulting bit-
error rates in the computed features are also shown in 
parenthesis). The error-aware model retains performance to very 
high error rates while the performance of the original model 
degrades rapidly [20].   

0 10 20 30 40 50

20

40

60

80

100

SRAM bit-cell Error Rate (%)

T
ru

e 
Po

sit
iv

e 
(%

)

0 10 20 30 40 50

20

40

60

80

100

SRAM bit-cell Error Rate (%)

T
ru

e 
Po

sit
iv

e 
(%

)

 
Fig. 6: Performance of (a) seizure detector and (b) arrhythmia detector. 
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Fig. 7: (a) RMS error by feature (normalized to the RMS of the feature 
value) and (b) representative error distributions from four features (cases 
shown correspond to 20% memory bit-cell errors in the seizure detector).  

For illustration, Fig. 7 shows sample feature error 
characteristics as a result of the injected faults. The magnitude of 
the errors (Fig. 7a) is large and their distributions (Fig. 7b) are 
highly irregular, indicating the high flexibility offered by DDHR.  
B. Logic-switching Errors (stuck-at faults) 
To inject logic switching faults, the synthesized gate-level netlists 
are manually altered by randomly selecting nodes in the circuit 
and assigning them a static value of logic ‘1’ or logic ’0’ with 
50% probability. Fig. 8 shows the performance results over ten 
runs; with logic-switching faults, the performance depends 
strongly on the precise nodes that are affected (although multiple 
runs are performed for the memory faults as well, the performance 
from run-to-run is more consistent, allowing the results to be 
consolidated into the profiles shown in Fig. 6). The error-aware 
model is able to consistently restore performance up to fault rates 
of 0.01% for the seizure detector (corresponding to over 5 nodes 
in the circuit) and fault rates of 7% for the arrhythmia detector 
(corresponding to over 100 nodes in the circuit) [20].  

 
Fig. 8: (a) Seizure detector performance with fault rate of 10-4 errors/node 
(10 runs), and (b) Arrhythmia detector performance with fault rate of 
7x10-2 per node (10 runs). The error-aware model retains a low FP rate. 

C. Instrumentation Amplifier Non-linearity 
Instrumentation-amplifier non-linearity is a critical challenging in 
sensing devices, limiting the dynamic range and ultimately the 
power consumption of the data-acquisition sub-system. Although 
a variety of effects on the transfer function are possible, for 
demonstration, we consider a transfer function given by the 
following [27]:  
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Here, the output (Vout) is set by a linear and several non-linear 
terms dependent on the input (Vin). In this formulation, the ideal 
output can be normalized to a range of ±1, and  can be used to 
represent a compression factor (with higher levels of yielding 
increasingly severe non-linearity). The transfer function that results 
from this is shown in Fig. 9.  

Fig. 9: Transfer curve resulting from the amplifier non-linearity 
considered. 

To analyze amplifier non-linearity, the data is processed 
through the non-linear transfer function (using terms up to the 5th 
order). Fig. 10 shows the resulting performance of the seizure 
detector with respect to . As with the digital faults, the error-
aware model is able to retain the performance to very high levels 
of the non-ideality. It is worthwhile to note that since analog non-
idealities have a gradual effect, the degradation in the classifier 
performance without the error-aware model is graceful, according 
to the inherent resilience of an SVM illustrated in Fig. 4 for low-
level errors (i.e., this can be seen for 100). 
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Fig. 10: Seizure detector performance with amplifier non-linearity using 
(a) TP rate to represent sensitivity and (b) TN rate to represent specificity. 

D. ADC Integral Non-linearity 
Depending on the ADC topology used, INL errors typically occur 
with a particular characteristic originating from non-idealities in 
the circuit components [28]. For demonstration, we consider the 
characteristic shown in Fig. 11, where INL steps, occurring at the 
MSB, MSB/2, and MSB/4 transitions, are parameterized by s (this 
characteristic is common for successive-approximation and 
pipeline ADCs [28, 29]). 
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Fig. 11: INL characteristic considered (parameterized by the MSB step, s). 

The INL error characteristic with varying step sizes, s, is 
converted into an ADC transfer curve and then applied to the 
recorded physiological data in the application. Fig. 12 shows the 
resulting performance of the seizure detector. As with the 
previous cases, the error-aware model is able to restore 
performance even with high levels of the non-ideality. 
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Fig. 12: Seizure detection performance with ADC INL errors using (a) TP 
rate to represent sensitivity and (b) TN rate to represent specificity. 

V. CONCLUSION 
Despite the complex and potentially severe consequences of 
hardware non-idealities in electronic devices, robust and flexible 
data-driven methods based on machine learning can overcome 
non-idealities by effectively modeling the error manifestations. 
Data-driven training using data affected by the non-idealities leads 
to an error-aware model that allows the detectors to retain overall 
performance despite severe errors. Signal classification is a key 
need in many emerging embedded applications, and it can directly 
take advantage of an error-aware model with no on-line overhead. 
We demonstrate this in biomedical detectors that analyze 
physiological signals using a support-vector machine (SVM) 
classifier. The advanced modeling capabilities of the SVM 
framework are shown to provide a highly effective and generic 
methodology for overcoming potentially severe errors due to 
digital and analog hardware non-idealities. 
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