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Abstract—In this paper, we review some recent advances in the
design of ADCs that exploit system-driven metrics, such as the
bit-error rate in a communication link, or mutual information
in a scheme employing forward error correction. We show, for
example, that ADCs can be designed that maximize the informa-
tion rate between the quantized output of the channel and the
input to the channel for communication links with intersymbol-
interference and additive noise. These ADCs dramatically outper-
form (in terms of achievable information rates) traditional ADC
design methods that are based on fixed uniform quantization.
Architectures are also developed for ADCs such that system-
metrics can be used to dynamically adapt the structure of the
ADC to optimize application meaningful criteria, such as bit-
error rate for communication over intersymbol interference links.

I. INTRODUCTION

Analog-to-digital converters (ADCs) form the heart of the
front-end of many signal processing systems, spanning such
applications as communication links, sensor networks, remote
sensing, and biomedical applications. For decades, the design
of such systems has been driven by metrics that permit system-
agnostic designs to be created and refined that enable circuit
designers to proceed with the design of an ADC unaware of the
applications for which they will ultimately be used. As a result,
metrics such as spurious free dynamic range (SFDR) and total
harmonic distortion (THD) tend to drive design decisions
that often lead to orders of magnitude more complexity and
power consumption in the analog front-end than is necessary.
In high-speed systems (e.g., in excess of 10 Gb/s), low-power
ADCs are particularly difficult to design, and the effective
number of bits (ENOB) usually does not exceed 4−6 [1]–[3].

In this paper, we review recent advances in the design of
ADCs that employ system-metrics to configure ADC design
parameters. Specifically, we present two techniques for ADC
design in communication links with intersymbol-interference
and additive noise (Fig. 1): (a) maximize the information rate
(IR) between the quantized channel output and the channel
input (Section III), and (b) ADC-design to minimize the
bit error-rate (BER) (Section IV). The IR-maximizing ADC
gives a bound on achievable performance in a link with error
correction, whereas the BER-optimal ADC presents a practical
technique to approaching this bound. Further, we demonstrate
a BER-optimal ADC in concert with both a tapped-delay line
linear equalizer and look-up table (LUT)-based detector. Finite
precision analysis demonstrates that LUT-based detectors
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Fig. 1. Role of an ADC in a communication link with intersymbol-interference
and additive noise.

actually reduce digital post-processing power and area up to
75% in a 45 nm CMOS process. Additionally, an adaptive,
approximate minimum BER algorithm that can determine the
BER-optimal reference levels for high-speed links employing
a flash ADC architecture is presented.

II. SYSTEM MODEL

We consider digital transmission over a discrete-time chan-
nel with intersymbol interference (ISI) and additive white
Gaussian noise (AWGN), such that the channel output is

Xc[n] =

M−1∑
i=0

h[i]B[n− i] + V [n], n = 1, 2, . . . , k, (1)

where the input bits B[n] ∈ {±1} are equally likely,
independent, and identically distributed (i.i.d.). The channel
has M fixed real coefficients h[i], and we define the state
of the channel as S[n] = Bn

n−M+2, where Bn
n−M+2 is the

sequence {B[n − M + 2], B[n − M + 3], . . . , B[n]}. The
noise V [n] ∼ N (0, σ2) satisfies E[V [n]V [n′]] = σ2δnn′ ,
and the signal-to-noise ratio (SNR) is defined as SNR =∑M−1

i=0 h2[i]/σ2. At the receiver, the channel output Xc[n] is
quantized using an ADC, modeled as scalar quantization with
N quantization regions. Employing a quantization function
Q1 : R → X , where X = {0, 1, . . . , N −1} is the finite set of
quantization indices, we have that X [n] = Q1(Xc[n]) is the
quantizer output. Throughout, it is assumed that the receiver
has perfect channel state information, and we refer to [4] for
the channel estimation problem with low-precision ADCs.

III. MAXIMUM INFORMATION RATE ADCS

The information rate of the ISI channel (1) combined with
scalar quantization is defined as (cf. [5, Theorem 4.6.4])

I(B;Q1(Xc)) = lim
k→∞

1

k
I(Bk;Xk|S[0]) (2)

= lim
k→∞

1

k

[
H(Xk|S[0])−H(Xk|Bk, S[0])

]
.
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TABLE I
SCALAR SINGLE-BIT (N = 2) ADCS FOR h = [0.5, 0.707, 0.5]T , K = 2.

SNR Threshold(s) Region indices I(B;Q1(Xc))

3 dB 0 [0, 1] 0.355
7 dB 0 [0, 1] 0.498
11 dB [−1.28, 0, 1.28] [0, 1, 0, 1] 0.672
18 dB [−1.22, 0, 1.22] [0, 1, 0, 1] 0.980

Here, Xk denotes the sequence {X [1], . . . , X [k]}. For a
fixed channel and a fixed quantizer, the entropy H(Xk|S[0])
can be computed efficiently with the forward recursions of
the BCJR-algorithm on the trellis of the channel [6], and
H(Xk|Bk, S[0]) = k H(X [1]|B[1], S[0]) can be calculated
using Q1. Consequently, the information-rate maximizing
quantization function with N quantization regions can be
found by solving

sup
Q1:R→X

I(B;Q1(Xc)) s.t. |X | = N, (3)

which seems hard to solve since k tends to infinity in (2), and
since (3) is a functional optimization over the quantization
function Q1. We therefore solve an approximation of (3) by
lower bounding I(B;Q1(Xc)) for K = {0, 1, 2, . . .} as [7,
Lemma 1]

I(B;Q1(Xc)) ≥ lim
k→∞

1

k

k∑
i=1

I(B[i];X i+K
i |Bi−1

i−M+1), (4)

and by discretizing the continuous observation Xc[i] at high
resolution, yielding the discrete variable X̄c[i] ∈ X̄ . With
X̄[i] = Q̄1(X̄c[i]), an approximation of (3) becomes

Ī∗ = max
Q̄1:X̄→X

I(B[i]; X̄ i+K
i |Bi−1

i−M+1) s.t. |X | = N, (5)

which we solve with an iterative algorithm [7] that can
be viewed as a modification of the information bottleneck
iterative algorithm [8].

As an example of such an optimization, suppose the channel
is h = [h[0], h[1], h[2]]T = [0.5, 0.707, 0.5]T [9]. Table I
summarizes the characteristics of 1-bit/sample (N = 2) quan-
tizers for various SNRs obtained from our iterative quantizer
design algorithm for K = 2 . Evidently, at low SNR, the
optimal single-bit quantizer for that channel has a single
threshold at zero (and is therefore equivalent to a simple
slicer). At high SNR, however, such a slicer is suboptimal, and
is outperformed by a single-bit quantizer with discontiguous
quantization regions. The advantage from information rate
optimized quantization is further illustrated in Fig. 2, where we
show information rates versus the SNR for the same channel.
Here, the gain from optimized quantization is most pronounced
at high SNR, since the information rate of the slicer saturates
at about 0.76, while an information rate of 1 can be achieved
with optimized single-bit quantization at high SNR.

IV. BER OPTIMAL ADC: DESIGN

Turning to quantization based on a detection criterion, we
represent the quantizer output using N levels r=[r1, . . . , rN ]T

defined by N − 1 thresholds t = [t1, . . . , tN−1]
T, non-
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Fig. 2. Rates for h = [0.5, 0.707, 0.5]T; all quantizers have 1 bit/sample.

uniformly spaced, using a BER metric. In the system presented
in Fig. 1, the equalizer output b̃[n] is given by

b̃[n] = sgn(y[n]) = sgn

(
L−1∑
j=0

c[j]x[n− j]

)
. (6)

An error is made when b̃[n] �= b[n] (assuming D = 0), so the
BER is computed by averaging over all possible values of y[n],
and hence all vectors xn = [x[n], x[n− 1], ..., x[n−L+ 1]]T

such that b̃[n] produces an error at the slicer:

BER = P{b[n] �= b̃[n]} (7)

=
∑
y[n]

[
P{y[n]}

1

2

(
1− b[n]b̃[n]

)]

=
∑
xn

⎛
⎝L−1∏

j=0

P{x[n− j] = rk}

⎞
⎠ 1

2

(
1− b[n]b̃[n]

)
,

where P{x[n− j] = rk} is given by

Q

(
tk−1 − z[n− j]

σ

)
−Q

(
tk − z[n− j]

σ

)
, (8)

P{•} signifies the probability of an event, and Q(•) is the
Gaussian Q-function. A BER-optimal ADC is one where r

and t are chosen to minimize (7).

A closed form expression for the BER optimal parameters
of the ADC, r and t, is difficult to obtain due to the highly
non-linear objective function. Therefore, we employ a gradient
descent technique to determine the parameters. The following
update equations are used to compute r iteratively. For the i-th
iteration of the algorithm, we have

BER = f(h, r, t, c, σ)

ri = ri−1 + μ

(
∂ BER
∂r

)∣∣∣∣
r=ri−1

≈ ri−1 + μ

(
Δ BER
Δr

)
(9)
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Fig. 3. Performance for a high-ISI channel employing 2-PAM modulation and
a LE: a) received signal distribution and ADC output levels for a high-ISI
channel, and b) BER vs. SNR curves for a 3-bit uniform, 3-bit BER-optimal,
4-bit uniform, and an infinite-precision ADC, respectively.

tk,opt =
rk,opt + rk+1,opt

2
. (10)

The placement of t remains given by (10), where rk,opt
denotes the optimum k-th reference level obtained through
the iteration (9). To avoid differentiating the sign function, the
gradient is approximated by finite differences [10].

This algorithm can be extended for decision-feedback equal-
izers by replacing the right-hand side of (6) with

sgn

⎛
⎝L−1∑

j=0

c[j]x[n− j]−
L2∑
l=1

d[l]b̃[n−D − l]

⎞
⎠ .

A. Simulation Results

We now review simulation results comparing a uniform
ADC and a BER-optimal ADC for a 20” FR-4 channel
carrying 10Gb/s data and employing linear equalization ( [11]
also includes a comparison with Lloyd-Max quantization). The
received signal distribution and ADC output levels at 32 dB
SNR are shown in Fig. 3(a). We observe that the 3-bit BER-
optimal ADC is significantly better than the 3-bit uniform
ADC as shown in Fig. 3(b). In this case, performance of the

(a)

(b)

Fig. 4. Two equalization techniques: a) LUT-based non-linear, and b) linear
equalizer (LE).

3-bit uniform ADC does not improve with increasing SNR
due to quantization noise. Compared to a 3-bit uniform ADC,
a shaping gain SG is too large to be quantified; compared
to a 4-bit uniform ADC, SG(BER = 10−15) = 3 dB. In the
next section, we compare two architectures to implement the
equalizer that follows the BER-optimal ADC.

B. Fixed Equalizer Architectures for BER-aware ADC

The representation of the ADC output values is tied to the
implementation of the equalizer. Since the quantization levels
are no longer uniform, changes in the digital output correspond
to different changes in the input. An equalizer employing
linear operators cannot operate directly on such digital outputs.
To address this issue, two equalizer architectures are consid-
ered (cf. Fig. 4): a) a look-up table-based [11], and b) a tapped-
delay line linear equalizer (LE). The LUT-based equalizer
operates directly on the L ADC samples, xenc[k], each repre-
sented with Bx bits, in order to make the decision b̃[k]. The
tapped-delay line LE first maps xenc[k] to x[k] with Br bits
(Br > Bx), so that the mapping x(t) �→ x[k] is closer to linear.

We now compare the complexities of the two detection tech-
niques following the BER-optimal ADC proposed in Fig. 4.
Both architectures were synthesized using Nangate’s 45 nm
cell library [11]–[13]. For the channel with receive signal
distribution shown in Fig. 3(a), two design points in the
plots, corresponding to 24 and 32 dB SNR are synthesized
and compared. From Table II, which presents area and power
estimates, we see that the LUT-based equalizer is in fact much
simpler than the tapped delay-line LE, indicating BER-optimal
ADCs can be realized with minimal complexity impact. At low
SNR for the ISI channel considered, the detector architecture
based on the tapped delay-line LE occupies 360μm2, while the
area of the LUT-based equalizer is only 100μm2. This repre-
sents an area reduction of 74%. Detector power consumption
reduces from 82μW to about 27μW, representing a 67%
reduction. For high SNR, area and power reduce by 76% and
73%, respectively. A global voltage of 0.95V and operating
clock frequency of 400MHz were used in this evaluation.

V. ADAPTIVE MINIMUM BER ADC REFERENCE LEVEL

ALGORITHM (AMBER-ADC)

In this section, we develop the AMBER algorithm for
adapting ADC reference levels, analogous to the development
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TABLE II
COMPARING COMPLEXITY OF LUT-BASED EQUALIZER WITH LE.

SNR (dB) Cell Area (μm2) Power (μW)

24 (LUT) 100 27
24 (LE) 360 82
32 (LUT) 100 27
32 (LE) 425 101

of AMBER for equalizer coefficients [14]. The BER, given by
(7), is a non-smooth function of c and r. In order to develop
an adaptation algorithm for reference levels, we assume that
the equalizer coefficients are fixed at c. The slicer input y[k]
and the slicer error e[k] are given by

y[k] = c
T
x[k]

e[k] = b[k]−
L−1∑
j=0

c[j]x[k − j]. (11)

Therefore,

E[e2[k]] = E

⎡
⎢⎣
⎛
⎝b[k]−

L−1∑
j=0

c[j]x[k − j]

⎞
⎠

2
⎤
⎥⎦ . (12)

The gradient of the expected squared error taken with respect
to the reference levels can be written as

∂E[e2[k]]

∂rn
= −2E

⎡
⎣e[k] ∑

j∈Jn[k]

c[j]

⎤
⎦ , (13)

where Jn[k] = {j : x[k−j] = rn}. Approximating the gradient
of MSE from (13) by its stochastic counterpart and taking the
sign of the error e[k], we obtain

rn[k + 1] = rn[k] + μr sgn (e[k])
∑

j∈Jn[k]

c[j], (14)

where μr is the step-size for the reference level update. The
thresholds are updated as

ti =
ri + ri+1

2
, for i = 1, . . . , N. (15)

Analogous to the method employed for equalizer updates [14],
the signed LMS algorithm (14) for ADC reference levels can
be modified as follows, to obtain an algorithm for reference
levels:

rn[k + 1] = rn[k] + μrI[k] sgn (e[k])
∑

j∈Jn[k]

c[j]. (16)

To evaluate the algorithm, the equalizer coefficients are ini-
tialized to c = copt. In practice, c can be initialized to
[0, . . . 0, 1, 0 . . .0]T, and the coefficients can be updated using
either the LMS or AMBER algorithm with the reference levels
uniformly spaced. Once the equalizer coefficients converge,
the reference levels can then be updated by choosing a small
step-size μr due to the sensitivity of BER to reference levels.
A practical implementation of the algorithm would require a
high resolution DAC for the comparator thresholds. A grid of
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Fig. 5. Performance evaluation of AMBER algorithm for reference level
updates.

initial conditions was explored, and the best performance gains
quantified. Fig. 5 compares the BER calculated using AMBER
and the optimal reference level settings for a 3-bit BER-
optimal ADC. The reference levels were initially uniformly
spaced spanning half the dynamic range, i.e, −Vmax/2 to
Vmax/2. The BER was evaluated after 4 × 105 bit periods.
Fig. 5 demonstrates that AMBER achieves the shaping gains
predicted in Fig. 3(b) (cf. [11]). We carried out simulations up
to an SNR of 28 dB to keep the simulation feasible.

REFERENCES

[1] H.-M. Bae, J. Ashbrook, J. Park, N. Shanbhag, A. Singer, and S. Chopra,
“MLSE receiver for electronic dispersion compensation of OC-192 fiber
links,” IEEE Journal of Solid State Circuits, vol. 41, no. 11, pp. 2541–
2554, 2006.

[2] M. Harwood et al., “A 12.5 Gb/s SerDes in 65nm CMOS using a baud-
rate ADC with digital RX equalization and clock recovery,” in IEEE
International Solid-State Circuits Conference, 2007.

[3] P. Schvan et al., “A 24GS/s 6b ADC in 90nm CMOS,” in IEEE
International Solid-State Circuits Conference, 2008.

[4] O. Dabeer and U. Madhow, “Channel estimation with low-precision
analog-to-digital conversion,” in Proc. IEEE Int. Conf. Comm., 2010.

[5] R. G. Gallager, Information Theory and Reliable Communication. John
Wiley and Sons, Inc., 1968.

[6] D. M. Arnold, H. A. Loeliger, P. O. Vontobel, A. Kavčić, and W. Zeng,
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