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ABSTRACT

In this paper, the problem of multiple hypothesis testing

with observation control is considered. The structure of the

optimal controller under various asymptotic regimes is stud-

ied. First, a setup with a fixed sample size is considered. In

this setup, the asymptotic quantity of interest is the optimal

exponent for the maximal error probability. For the case of

binary hypothesis testing, it is shown that the optimal error

exponent corresponds to the maximum Chernoff information

over the choice of controls. It is also shown that a pure station-

ary control policy, i.e., a fixed policy which does not depend

on specific realizations of past measurements and past con-

trols (open-loop), is asymptotically optimal even among the

class of all causal control policies. We also derive lower and

upper bounds for the optimal error exponent for the case of

multiple hypothesis testing. Second, a sequential setup is con-

sidered wherein the controller can also decide when to stop

taking observations. In this case, the objective is to minimize

the expected stopping time subject to the constraints of van-

ishing error probabilities under each hypothesis. A sequential

test is proposed for testing multiple hypotheses and is shown

to be asymptotically optimal.

1. INTRODUCTION

The topic of controlled sensing for inference in uncertain

environments deals primarily with adaptively managing and

controlling multiple degrees of freedom in an information-

gathering systems, ranging from the sensing modality to

the physical control of sensors to fulfill the goal of a given

inference task. It has immediate implications in various

applications, including infrastructure monitoring systems,

surveillance systems, sensor networks and social networks.
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The main challenge lies in understanding the tradeoff be-

tween the value of information and the cost of acquiring this

information for making decisions regarding the underlying

inference problem.

In this paper, we focus on the inference problem of hy-

pothesis testing in a non-Bayesian setting, and our goal is an

asymptotically optimal joint-design of a control policy and a

decision rule to decide among the various hypotheses. In par-

ticular, we consider a Markovian model of simple hypothesis

testing of multiple hypotheses with observation control. Prior

to making a decision about the hypothesis, the decision-maker

can choose among different actions, which in turn affect the

quality of the observations. Due to space constraints, we state
all results without their proofs.

In section 2, we focus on the setup with a fixed sample

size. In this setup we further consider two possible control

policies, namely, open-loop control and causal control. While

in the former the control cannot depend on the measurements,

in the latter, the control can be a function of past measure-

ments and past controls.

For a binary hypothesis testing problem without control,
the characterization of the optimal exponent for the maximal

error probability (maximized over all hypotheses) in terms of

the Chernoff information is well-known (see, e.g., [3]). How-

ever, in the presence of control, it is not clear what the optimal

error exponent is and what the optimal controller should be.

In Section 2, we first give a complete characterization of the

optimal exponent for the maximal error probability and for

the case of binary hypothesis testing. Interestingly, we show

that a pure stationary control suffices to achieve the optimal

error exponent among the class of causal controls. We also

provide upper and lower bounds for the optimal error expo-

nent for the case of general multiple hypothesis testing (with

more than two hypotheses). It remains open to characterize

the optimal error exponent among the class of all causal con-

trols.

In section 3, we consider a sequential setup wherein the

controller can adaptively choose to stop taking measurements.
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In this case, a sequential test is fully described by a control

policy, a stopping rule and a final decision rule. In contrast to

the earlier fixed sample size setup in Section 2, the error ex-

ponent is no longer a good metric since the expected stopping

time will surely depend on the underlying hypothesis.

In [8], the problem of binary sequential hypothesis test-

ing without control was considered. Therein, the optimal ex-

pected values of the stopping time are characterized subject

to the constraints of vanishing probabilities of error under

each hypothesis. An extension to the case of multiple hy-

pothesis testing was considered in [1] in which the authors

proposed a sequential test which was later shown to satisfy

certain asymptotic optimality conditions [4, 5].

The problem of sequential binary hypothesis testing with

observation control was considered in [2] and an asymptot-

ically optimal (in the aforementioned sense) sequential test

was presented. A Bayesian version of this sequential problem

(with the observation control) was considered by the authors

in [6] in the non-asymptotic regime. Since the optimal pol-

icy is generally hard to characterize, they identified certain

conditions under which the optimal control is shown to be an

open-loop control. In this paper, we extend the result in [2] to

the case of multiple hypothesis testing. Unlike the fixed sam-

ple size setup, an open-loop control may no longer be optimal

for the case of binary hypothesis testing. In addition, ran-

domization is necessary to attain the optimal tradeoff except

for the case of binary hypothesis testing.

2. THE FIXED SAMPLE SIZE SETUP

In this section, we consider the setup in which the sample

size does not depend upon specific realizations of the mea-

surements and the controls.

Consider a hypothesis testing problem with M hypothe-

ses: Hi, i ∈ M � {0, . . . , M − 1}, where at each time the

measurement takes values in X and the control takes values in

U . Both the alphabets of the observation X and of the control

U are assumed to be finite. Under each hypothesis Hi, i =
0, . . . , M − 1, and at each time k, conditioning on the current

control uk = u, the current observation Xk is assumed to

be conditionally independent of past measurements and past

controls
(
xk−1, uk−1

)
� ((x1, . . . , xk−1) , (u1, . . . , uk−1))

and to be conditionally distributed according to a probability

mass function (pmf) Pu
i (x).

We consider two classes of control polices based on

two possible information patterns. The first is an open-loop

control where the (possibly randomized) control sequence

(U1, . . . , Un) is assumed to be mutually independent of the

measurements (X1, . . . , Xn), and the second is a causal con-

trol where at each time k, the control Uk can be any (possibly

randomized) function of past measurements and past con-

trols, i.e., Uk, k = 2, 3, . . . , n, is described by an arbitrary

conditional pmf qk

(
uk|xk−1, uk−1

)
, and U1 is distributed

according to a pmf q1 (u1). If all these (conditional) pmfs

are point-mass distributions, i.e., the current control is a de-

terministic function of past measurements and past controls,

then the resulting control is a pure control policy. Under the

aforementioned (conditionally) memoryless assumption, the

joint pmf of (Xn, Un) under each hypothesis Hi, denoted by

Pi (xn, un) , i = 0, . . . , M − 1, can be written as

Pi (xn, un) � q1 (u1)
n∏

k=1

Puk
i (xk)

n∏
k=2

qk

(
uk|xk−1, uk−1

)
.

(1)

Note that for an open-loop control, each qk

(
uk|xk−1, uk−1

)
,

k = 2, . . . , n, is independent of xk−1.

After n observations, a decision is made according to the

rule δ : Xn × Un → M with the maximal error probability:

e
(
{qk}n

k=1 , {Pu
i }u∈U

i∈M , δ
)

� max
i∈M

Pi {δ (Xn, Un) �= i} .

Note that for a pure control, un is either fixed (pure open-loop

control) or is a deterministic function of the measurements xn

(pure causal control). Consequently, when a pure control is

adopted, it suffices to consider a decision rule that is a func-

tion only of the measurements xn, i.e., δ (xn, un) = δ (xn).
The asymptotic quantities of our interest will be the

largest exponent for the maximal error probability achiev-

able by an open-loop control, denoted by βOL, and by a

causal control, denoted by βC , respectively. In particular,

βOL � lim
n

sup
δ, q(un)

− 1
n

log
(
e
(
q (un) , {Pu

i }u∈U
i∈M , δ

))
;

βC �

lim
n

sup
δ, q1(u1),

{qk(uk|xk−1,uk−1)}n
k=2

− 1
n

log
(
e
(
{qk}n

k=1 , {Pu
i }u∈U

i∈M , δ
))

.

It follows immediately from these definitions that βOL ≤
βC , as the information pattern associated with the causal con-

trol is more informative than that associated with the open-

loop control.

2.1. The Case of Binary Hypothesis Testing (M = 2)

We start with an auxiliary result that involves a different setup

in which a constraint is put on the probability of error under

the null hypothesis H0, i.e., only control policies and decision

rules that satisfy

P0 {δ �= 0} ≤ ε, (2)

for a fixed ε, 0 < ε < 1, will be considered. Under this

constraint, we are interested in the largest error exponents un-

der the alternative hypothesis H1, achievable by an open-loop

control, denoted by αOL (ε), and by a causal control, denoted

by αC (ε) , respectively. In particular,

αOL (ε) � lim
n

sup
δ, q(un)

− 1
n

log (P1 {δ �= 1}) ; (3)
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αC (ε) �

lim
n

sup
δ, q1(u1),

{qk(uk|xk−1,uk−1)}n
k=2

− 1
n

log (P1 {δ �= 1}) .

(4)

where the suprema in (3) and (4) are over all corresponding

control policies and decision rules satisfying (2).

For two pmfs q and p on X , the Kullback-Leibler (KL)

divergence of q and p, denoted by D(q‖p), is defined as

D(q‖p) �
{ ∞, if ∃x ∈ X , p(x) = 0, q(x) > 0,∑

x: p(x)>0 q(x) log
(

q(x)
p(x)

)
, otherwise.

Proposition 1 For M = 2 and any ε, 0 < ε < 1, it holds
that

αOL(ε) = αC(ε) = max
u∈U

D (Pu
0 , Pu

1 ) . (5)

Remark 1 The above characterization of αOL(ε) can be de-
rived from a result of Tsitsiklis [7] in a different setup; our
main contribution is the characterization of αC(ε).

Remark 2 It follows from Proposition 1 and Stein’s Lemma
(see, e.g., [3]) that to achieve the optimal error exponent,
it suffices to use a stationary control sequence uk = u∗ =
argmaxu∈U D (Pu

0 , Pu
1 ) , k = 1, . . . , n. In particular, infor-

mation from the past and randomization are superfluous for
attaining the best error exponent.

Our main contribution for the case of binary hypothesis

testing is the following characterizations of the optimal ex-

ponents for the maximal error probability achievable by an

open-loop control and by a causal control. Its derivation re-

lies on Proposition 1 and is omitted.

For any u ∈ U , and any s ∈ [0, 1], we consider the fol-

lowing pmf 1

Bu
s (x) � Pu

0 (x)s
Pu

1 (x)1−s∑
x Pu

0 (x)s
Pu

1 (x)1−s . (6)

We also let

s∗ (u) � argmax
s∈[0,1]

− log

(∑
x

Pu
0 (x)s

Pu
1 (x)1−s

)
.

Theorem 1 For M = 2, it holds that

βOL = βC

= max
u∈U

max
s∈[0,1]

− log

(∑
x

Pu
0 (x)s

Pu
1 (x)1−s

)

(7)

= max
u∈U

D
(
Bu

s∗(u)‖Pu
0

)
= max

u∈U
D
(
Bu

s∗(u)‖Pu
1

)
.

(8)

1To get continuity in the parameter s ∈ [0, 1], we use a convention that

when s = 0 or 1, 00 = 0.

Remark 3 For each fixed u ∈ U , the quantity

max
s∈[0,1]

− log

(∑
x

Pu
0 (x)s

Pu
1 (x)1−s

)

is called the “Chernoff information” of Pu
0 and Pu

1 . It has an
operational significance (see, e.g., [3]) of being the largest
exponent for the maximal error probability for an indepen-
dent and identically distributed (i.i.d.) model of observations
Pu

0 and Pu
1 (for that fixed u) under the respective hypotheses.

Consequently, Theorem 1 (cf. (7)) states that under obser-
vation control, the optimal error exponent is the maximum
Chernoff information over the choice of controls.

Remark 4 Similar to Remark 2 pertaining to Proposition 1,
it follows from Theorem 1 and the result on the Chernoff infor-
mation for i.i.d. observations that the above optimal error ex-
ponent is achievable by a stationary (fixed) control sequence
uk = u∗ which is the maximizer of the right-side of (7) (or,
identically, that of the two quantities in (8)).

2.2. The Case of Multiple Hypothesis Testing (M > 2)

Our last result for the fixed sample size setup is a full (partial)

characterization of the optimal exponent for the maximal er-

ror probability achievable by an open-loop (a causal) control,

respectively.

Theorem 2 For M > 2, it holds that2

max
q(u)

min
i �=j

max
s∈[0,1]

−
∑
u∈U

q (u) log

(∑
x

Pu
i (x)s

Pu
j (x)1−s

)

= βOL ≤ βC ≤

min
i �=j

0≤i<j≤M−1

max
u∈U

max
s∈[0,1]

− log

(∑
x

Pu
i (x)s

Pu
j (x)1−s

)
.

3. THE SEQUENTIAL SETUP

In the previous section we considered tests with fixed sample

size. In this section, we consider a different setup where new

observation arrives at each time instant and where the con-

troller also has to choose when to stop taking observations

(stopping time). In this case, the goal is to design a sequen-

tial test, which consists of a rule to select control actions, a

stopping rule, and a final decision rule to optimize the trade-

off between reliability (in terms of probabilities of error) and

delay.

In [2] Chernoff considered the problem of composite bi-

nary hypothesis testing with observation control. He pre-

sented a simple procedure for this problem which was shown

to be asymptotically optimal. In this paper, we extend this

result to the case where M > 2.

2The first equality regarding βOL can be already inferred from a result in

[7].
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3.1. Model

Let Fk be the σ-field generated by (Xk, Uk). An admissible

sequential test γ = (φ, N, δ) consists of a causal observation

control policy φ, defined through (conditional) pmfs akin to

the paragraph preceding (1), an Fk-stopping time N and the

final decision rule δ. At each time instant the controller has to

decide whether to take more observations or to stop and make

a decision about the unknown hypothesis. If the controller

decides to take an observation, a positive cost c is incurred

and the controller selects one of the possible actions in U .

Clearly, there is a tradeoff between the performance of the

test and the expected time to reach the final decision (hence

a cost or a delay). Our goal is to design an efficient test to

optimize the aforementioned tradeoff. More specifically, we

are interested in designing a test and studying its behavior in

terms of probabilities of error and delay as the cost of obser-

vations c approaches 0, i.e., when the probabilities of error

Pi(δ(Xn, Un) �= i) are small and the expected stopping time

Ei[N ] is large under each hypothesis i ∈ M. Next, we pro-

pose a sequential test for multiple hypotheses and analyze its

asymptotic performance.

3.2. The Sequential Test

At time k, we compute the most likely hypothesis, denoted by

îk, and the closest alternative hypothesis ĩk, given all obser-

vations upto time k as follows

îk = argmax
i∈M

Pi(xk, uk), and ĩk = argmax
i∈M\{îk}

Pi(xk, uk)

(9)

If we decide to continue taking observations at time k, then

we select a control uk+1 ∈ U sampled from a distribution

q(u) � P{Uk+1 = u|Îk = îk}
obtained as a solution to the following maximin problem

max
q(u)

min
i∈M,i �=îk

∑
u∈U

q(u)D(Pu
îk

, Pu
i ). (10)

The stopping rule is then defined as follows. We stop tak-

ing observations at time k = n if the following condition is

satisfied

log
Pîn

(xn, un)
Pĩn

(xn, un)
≥ − log c. (11)

If we stop at time k = n, the decision rule chooses

δ(xn, un) = în. (12)

Theorem 3 The proposed sequential test which has the con-
trol policy in (10), the stopping rule in (11), and the final de-
cision rule in (12) achieves, for each hypothesis Hi, i ∈ M,
the following probabilities of error

Pi(δ(XN , UN ) �= i) = O(c), (13)

and achieves, for each hypothesis Hi, i ∈ M, the following
values of the expected stopping time

Ei[N ] ≤ − log c

maxq(u)∈U minj∈M,j �=i

∑
u∈U q(u)D(Pu

i , Pu
j )

+ o(− log c), ∀i ∈ M. (14)

Furthermore, this test is asymptotically optimal, i.e., any se-
quential test which achieves probabilities of error as in (13)
under all hypotheses will also have an expected stopping time
larger than (14).

Remark 5 Note that the maximizing distributions of the ex-
pression in the denominator on the right side of (14) may vary
across the different hypotheses Hi, i ∈ M. It then follows
from this observation that for the sequential setup, unlike for
the fixed sample size setup, an open-loop control may not be
asymptotically optimal for the case of binary hypothesis test-
ing. In addition, randomization is necessary to attain the op-
timal performance in (14) except for the case of M = 2.
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