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ABSTRACT

We present an approach to adaptive measurement selection

in compressive sensing for estimating sparse signals. Given

a fixed number of measurements, we consider the sequential

selection of the rows of a compressive measurement matrix to

maximize the mutual information between the measurements

and the sparse signal’s support. We formulate this problem

as a partially observable Markov decision process (POMDP),

which enables the application of principled reasoning for se-

quential measurement selection based on Bellman’s optimal-

ity condition.

Index Terms— Compressive sensing, POMDP, rollout,

Q-value approximation, adaptive sensing

1. INTRODUCTION

The notion of adaptively scheduling compressive measure-

ments in a closed-loop fashion for estimating sparse signals

has been discussed in a number of recent papers; e.g., [1]–

[6]. The basic idea is to select, at each measurement step, the

“best” measurement vector (perhaps from a predefined library

of vectors) given the measurements that have been obtained

thus far. The objective function for the optimization and the

assumptions about the sparse signal to be estimated can take a

number of possible forms. For example, in [3], the objective

is to maximize the posterior variance of the expected mea-

surement.

In this paper, we consider the problem of sequentially

scheduling compressive measurements so that at the end, we

optimize a measure of performance for estimating an s-sparse

signal in R
N . We assume that the number of measurements

m is fixed. Moreover, the performance measure used here

is the mutual information between the measurements and the

sparse signal’s support set, i.e., the set containing locations

of all the nonzero entries of the signal, which we consider

to be random. We further assume that given the support, the

signal amplitudes follow a Gaussian distribution. The noise is

taken to be additive white Gaussian, added at the output of the

This work is supported in part by DARPA/DSO contract N66001-11-C-

4023, ONR contract N00014-08-1-110, and AFOSR contract FA9550-09-1-

0518.

compressive sampler. Under these assumptions, maximizing

the mutual information is equivalent to minimizing the condi-

tional signal’s support entropy given all the measurements.

With this objective, we present a finite-horizon partially

observable Markov decision process (POMDP) formulation

(see [7]), whose solution gives the optimal policy for sequen-

tially selecting compressive measurements. One of the main

problems in using the POMDP formulation is that finding

the optimal policy in general is computationally prohibitive.

Fortunately, several methods exist for approximating optimal

policies in POMDP (see [8] for a review of such methods).

In our numerical examples, we have used one of these ap-

proximation methods, known as rollout, and have compared

our solution with a class of nonadaptive methods described in

Section 4.

2. POMDP FORMULATION

Let x ∈ R
N represent the s-sparse signal,1 which we wish

to estimate from a fixed number m of compressive measure-

ments. The kth compressive measurement is given by

yk = aTk x+ wk, (1)

where aTk is the kth row of an m ×N compressive measure-

ment matrix to be designed, and wk ∼ N (0, σ2
w). For the

s-sparse signal x, there are
(
N
s

)
possibilities for the locations

of the nonzero entries, called the support of the signal x. We

consider a prior probability distribution over such possibilities

for the signal’s support. Given the support, the values of the

nonzero entries of this support have a multivariate Gaussian

distribution.

Our goal is to sequentially design the row vectors aTk ,

k = 1, 2, . . . ,m, to optimize the mutual information between

the observation vector y = [y1, y2, . . . , ym]T and the sup-

port of x. This is a multistep scheduling problem, which can

be formulated as a POMDP. To formulate this problem as a

POMDP, we need to specify the following components:

States and State Transition Law: Let d be an (s × 1)
discrete random vector whose entries represent locations of

1In this paper, we call an N -dimensional signal s-sparse if it has exactly

s � N nonzero entries.
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the nonzero entries of the signal x. Each entry of the vector d
can take a value from Ω = {1, 2, . . . , N}. Therefore, the vec-

tor d takes values from the set Ωs = {A : A ⊂ Ω, |A| = s}.

Let v be a continuous random vector in R
s whose entries are

the s nonzero elements of x. The state space of the POMDP

model is defined as the Cartesian product of two components:

the first is the set Ωs and the second is the set Rs.

Let sk = (d,v) represent the state of the POMDP at time

k. Since the signal x does not change over time, the state

transition law is trivial: sk = sT for k = 1, . . . ,m, where sT
is the true state of the system.

Define Hk as Hk = {a1, y1, . . . ,ak, yk}, i.e., the in-

formation available at time k. Let fv,d|Hk
(z,q|Hk) be the

conditional joint probability distribution function of random

vectors v and d at time k given the information Hk. Also,

let Pd|Hk
(q|Hk) be the conditional probability mass func-

tion for the random vector d defined over the state space Ωs

given Hk. The conditional probability distribution function

fv|Hk
(z|Hk) is a Gaussian mixture, i.e.,

fv|Hk
(z|Hk) =

∑
q∈Ωs

Pd|Hk
(q|Hk)fv|d,Hk

(z|q, Hk),

where each component fv|d,Hk
(z|q, Hk) is a multivariate

Gaussian distribution with (s × 1) mean vector μd,k and

(s× s) covariance matrix Cd,k.

The function fv,d|Hk
(z,q|Hk) is the belief state bk of

the POMDP at time k. The transition probability for bk is

obtained from Bayes’ rule applied to the state transition law

and the observation law. We will derive the belief state update

equation later.

Actions: In this model, each action ak is a real N -

dimensional vector. Thus, the action space is A = R
N .

Observations and Observation Law: The set of possi-

ble observations is the real line R. These observations are

collected using the linear model (1). Given sk = (d,v) and

ak = a at time k, then yk|(d,v,a) ∼ N (aTdv, σ
2
w), where

the vector ad is an (s×1) vector whose ith entry is the d(i)th
entry of the vector a (where d(i) is the ith entry of the vector

d).

Cost: We define the POMDP cost ck(sk,ak) for each

time step k to be the conditional mutual information between

the random variable d and the observation yk given the his-

tory Hk, i.e., ck(sk,ak) = I(yk;d|Hk). We also define the

POMDP belief cost rk(bk,ak) in the following way:

rk(bk,ak) = E [ck(sk,ak)|Hk] .

Note that the expectation is with respect to the posterior dis-

tribution of the POMDP state sk at time k, which is bk.

Having defined the POMDP components, we now de-

scribe how to update the belief state bk. Since

bk = fv|d,Hk
(z|q, Hk)Pd|Hk

(q|Hk),

we only have to show how values of fv|d,Hk
(z|q, Hk) and

Pd|Hk
(q|Hk), the components of the Gaussian mixture, are

updated once a new action ak is chosen and a new observation

yk is observed. The idea behind doing this is very simple;

the weights of the Gaussian mixture, Pd|Hk
(q|Hk), for each

possible q can be updated using the following equation:

Pd|Hk
(q|Hk) =

Pd|Hk−1
(q|Hk−1)fyk|d,Hk−1,ak

(y|q, Hk−1,ak)∑
q∈Ωs

Pd|Hk−1
(q|Hk−1)fyk|d,Hk−1,ak

(y|q, Hk−1,ak)
,

where yk|d, Hk−1,ak ∼ N (aTd,kμd,k,a
T
d,kCd,kad,k + σ2

w).
Given the vector d, the following linear system describes the

dynamics of our model:{
vk+1 = vk,
yk = aTd,kvk + wk,

where ad,k is built from action ak in the same way that the

vector ad is built from the vector a. The vector vk has the

conditional distribution N (μd,k,Cd,k) for a given history

Hk and d. Thus, this distribution can be updated using a sim-

ple Kalman filter. Since there are
(
N
s

)
possibilities for the

vector d, we have to use
(
N
s

)
Kalman filters to keep track of

values μd,k and Cd,k after getting a new observation yk at

each time k.

Next, we will briefly discuss optimal policies and Q-value

approximation.

3. Q-VALUE APPROXIMATION

The main goal is to find, for each time step k, an optimal

mapping π∗
k from the set of distributions B over the state space

S to the actions space A, i.e., π∗
k : B → A, such that if the

action ak is chosen based on this mapping, then over the time

horizon m, a predefined objective function is maximized. We

refer to π∗ = {π∗
1 , . . . , π

∗
m} as the optimal policy.

There are different ways to define the objective func-

tion. We choose the objective function for a policy π =
{π1, π2, . . . , πm} to be the expected cumulative reward de-

fined as

V π
m(b1) = E

[
m∑

k=1

rk(bk, πk(bk))

∣∣∣∣∣b1

]
.

Let V π∗
m be the optimal objective function value over the

horizon m when an optimal policy π∗ is used. In general,

finding an optimal policy for such an objective function is

very hard. However, Bellman’s principle, which states that

V π∗
m (b1) = max

a
(r1(b1,a) +E[V π∗

m−1(b2)|b1,a]),

and also,

π∗
1(b1) = argmax

a
(r1(b1,a) +E[V π∗

m−1(b2)|b1,a]),
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suggests an alternative way to find an optimal policy. Define

Qm−k(bk,a) = rk(bk,a) +E[V π∗
m−k(bk+1)|bk,a]

to be the Q-value of taking action a given the belief state bk

at time k. Then, by Bellman’s principle,

π∗
k(bk) = argmax

a
Qm−k(bk,a).

This means that finding the optimal action at time k for the

state bk is equal to finding the action with the largest Q-value

for state bk at time k.

Although Bellman’s principle provides a method to find

an optimal solution, for many problems, because of the size

of the state space, the action space, and also the observation

space, finding such a solution is computationally prohibitive.

Therefore, we resort to estimating the Q-value of each action

at each belief state. There are different ways to do this ap-

proximation. In this paper, we describe a method known as

rollout.
In rollout, for a given state bk and action a, we re-

place the value E[V π∗
m−k(bk+1)|bk,a] in Qm−k(bk,a) with

E[V πbase

m−k(bk+1)|bk,a]. The term V πbase

m−k(bk+1) is the ex-

pected cumulative reward for the m− k remaining time steps

when actions are chosen from a predefined policy known as

the base policy πbase. In other words, for finding an estimate

for Qm−k(bk,a), instead of solving optimization problems

nested in layers one over another, we only solve one opti-

mization problem for finding the optimal immediate action

a∗k and we choose the remaining future actions from the base

policy πbase. It is shown in [9] that the resulting policy from

rollout performs at least as well as the base policy used in the

rollout.

4. SIMULATION RESULTS

As a simple example, we consider the problem of estimating

a 1-sparse signal in R
75 using m = 8 measurements. Recall

from Section 2 that d and v are two random vectors represent-

ing locations and values of the nonzero entries of the signal x.

We use a specific prior for the probability mass function Pd,

shown in Fig. 1, which suggests that the signal’s nonzero en-

try is located somewhere in the first 16 indices of the signal,

which covers about 20% of the range of possible locations.

Therefore, when designing rows of the measurement matrix,

each measurement row aTk can be divided into two parts: the

first part is a 16-dimensional vector with norm 1, and the sec-

ond part is a 59-dimensional vector of zeros. Moreover, our

actions are chosen from a static library of 50 measurement

vectors that together, build a Grassmannian line packing (see

[10] and [11]) in R
16. We also assume that v ∼ N (0, σ2).

For our simulations, we generated 100 signal samples and for

each signal sample, we repeated our simulations 50 times.

We have implemented two variations of our method. In

the first variation (Greedy), we set the decision-making hori-

zon to 1, i.e., at each time step k, we choose the action that

Fig. 1. Prior structure used for Pd.

maximizes the one step ahead belief cost rk(bk,ak). In other

words, this method is a greedy method for choosing actions.

In the second variation (Rollout), at each time step and for

each action candidate, a rollout method looks 4 steps ahead

and chooses the action with the best Q-value. The base policy

we use for rollout randomly chooses one of the 50 measure-

ment vectors in the above library and adds a 59-dimensional

vector of zeros to it. To estimate the Q-value for each candi-

date action, we took an average over 50 Q-value samples.

We compare the performance of the measurement matri-

ces obtained from the variations Greedy and Rollout of our

method with three other methods. In the first method (Ran-

dom), the measurement rows are unit norm vectors in R
75

with i.i.d. N (0, 1/m) values. This method does not use the

prior in designing the measurement rows. In the second and

third methods, measurement rows have a similar structure to

those used in variations of our method. In other words, they

are divided into two parts where the first part is of dimen-

sion 16 and has a unit norm and the second part contains ze-

ros. In the second method (Limited Random), the first part of

the vector contains i.i.d. N (0, 1/m) values, and in the third

method (Random from Library), the first part of the vector is

one of the measurement vectors from the library introduced

above that is chosen randomly for each time step.

Fig. 2 shows the performance of the five methods intro-

duced above. The metric used in this figure for comparing

these methods is the posterior probability of the true support,

i.e., the value of Pd|H8
(dT |H8) where dT is the true location

of the nonzero entry of the signal. We have shown the per-

formance of these methods for different values of signal-to-

noise-ratio (SNR), which is defined as SNR = σ2/σ2
w. This

figure shows that both variations of our method, i.e., Greedy

and Rollout, perform similar to each other but better than the

other three methods as the SNR increases.

As another way of comparing the above methods, we ran

an experiment where we wanted to see on average how many

more measurements the Random and Limited Random meth-

ods require in order to reach the performance of the Greedy
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Fig. 2. Comparison of the five methods for N = 75 and m =
8. The dashed lines indicate the 95% confidence intervals.

method when the same metric (the posterior probability of the

true support) is used for comparison. Fig. 3 shows the results

for different values of SNR, suggesting that in this simple sce-

nario with the particular prior used, simply knowing that the

true support lies within the first 16 indices provides very sig-

nificant performance gains over the random scheme. More-

over, further adaptation only provides slight marginal gains

over the exploitation of the prior knowledge provided by our

highly informative prior distribution.

5. CONCLUSIONS

In this paper, we have presented a principled approach to

adaptive measurement selection in compressed sensing using

POMDP theory. We have presented numerical examples to

compare the performance of our design with alternative non-

adaptive methods in estimating a 1-sparse signal, which indi-

cate that at moderate to high SNR regimes, our design out-

performs the nonadaptive methods. In the scenario presented

here, the prior knowledge is found to be much more useful

Fig. 3. Average number of measurements required for Ran-

dom and Limited Random to reach the Greedy’s performance.

than “acquired” knowledge. This is perhaps unsurprising in

view of the very specific nature of the prior used in our exper-

iment, the simple static scenario being considered here, and

the recent observations in [1] on the limits of adaptation un-

der static scenarios. Currently, we are considering more dy-

namic scenarios, where we expect adaptation to play a more

significant role.
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