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ABSTRACT

How does local and global decision making interact in detec-
tion theory? This paper considers multi-agent quickest time
change detection with social learning. We show that the opti-
mal decision exhibits a remarkable multi-threshold behavior
within the space of Bayesian distributions. For small change
probabilities, an explicit characterization of this behavior is
obtained in terms of fixed points of the posterior update.

1. INTRODUCTION

Bayesian quickest time detection [1] involves detecting a ge-
ometrically distributed change time by optimizing the trade-
off between false alarm frequency and delay penalty [2, 1].
This paper considers multi-agent quickest detection. Given
local decisions from agents performing social learning [3],
how can a global decision maker achieve quickest change de-
tection? That is, each agent chooses its local decision by op-
timizing a local utility function (which depends on the public
belief of the state and its local observation). Instead of re-
vealing its posterior distribution of change, each agent reveals
its local decision to subsequent agents. Subsequent agents
update their public belief based on these local decisions (in
a Bayesian setting), and the sequential procedure continues.
How can such a multi-agent system detect a change in the
underlying state and make a global decision to stop?

Classical quickest detection is a trivial case where agents
reveal their local observation (instead of local decision) to
subsequent agents. In quickest time change detection with
social learning, the local decision determines the belief state
which determines the global decision (stop or continue)which
determines the local decision at the next time instant and so
on. This interaction of local and global decision-making leads
to unusual behavior as outlined below.

Fig.1(a) gives a visual description of the optimal policy of
quickest detection with social learning. It illustrates a triple
threshold policy for geometric distributed change time. Com-
plete details of this numerical example are given in Sec.4. The
horizontal axis π(2) is the posterior probability of no change.
The vertical axis denotes the optimal decision: u = 1 denotes
stop and declare change, while u = 2 denotes continue. The
multi-threshold behavior of Fig.1(a) is unusual: if it is optimal
to declare a change for a particular posterior probability, it
may not be optimal to declare a change when the posterior
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(b) Value function V (π) for
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Fig. 1. Optimal decision policy for quickest time change
detection based on social learning for geometric distributed
change time, see Example 2 of Sec.4 for details. The optimal
policy μ∗(π) is characterized by a triple threshold. The value
function V (π) is non-concave and discontinuous.

probability of a change is larger! Fig.1(b) shows the associ-
ated non-concave value function obtained via stochastic dy-
namic programming. Fig.1 shows that social learning results
in fundamentally different decision policies compared to clas-
sical quickest time detection (which has a single threshold).
Related Works : In the last decade, social learning has been
studied widely in economics to model the behavior of finan-
cial markets, crashes and booms, crowds and social networks,
see [4, 3] and numerous references therein. The social learn-
ing setup is similar to Hellman’s and Cover’s 1970s paper [5].
Global decision making with social learning has recently been
studied by several economists [3]. We address a related prob-
lem: if agents make (simple) decisions by optimizing a local
utility, how can the global system achieve change detection?

Main Results: Sec.2 presents the multi-agent social
learning protocol. The quickest time detection problem is
formulated and the optimal stopping policy is characterized
in terms of stochastic dynamic programming. The main re-
sult of Sec.3 is to characterize quickest time change detection
policies when the probability of change, denoted ε, is small;
see also [6]. Theorem 2 characterizes the multi-threshold
structure of the optimal decision policy.

2. SOCIAL LEARNING PROTOCOL
Consider a countably infinite number of agents performing
social learning to estimate an underlying state process x. (An
identical setup holds if a finite number of agents are polled
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repeatedly in some pre-defined order, if agents pick local de-
cisions based on the most recent public belief [7].) Each agent
acts once in a sequential order indexed by k = 1, 2, . . ..

Let yk ∈ Y = {1, 2, . . . , Y } denote the local (private)
observation of agent k and ak ∈ A = {1, 2} denote the local
decision agent k takes. Define

Hk σ-algebra generated by (a1, . . . , ak−1, yk),

Gk σ-algebra generated by (a1, . . . , ak−1, ak). (1)

The social learning model [8, 3] comprises:
1. Absorbing-state Markov chain: We model the change

point τ0 by a geometric distribution by a two state Markov
chain xk on state space X = {1, 2}. Here state ‘1’ is an
absorbing state and denotes the state after the jump change.
The states 2 is state that x resides in before the jump. The

transition probability matrix is P =

[
1 0

1 − P22 P22

]
. Let

the “change time” τ0 denote the time at which xk enters the
absorbing state 1, i.e., τ0 = inf{k : xk = 1}.

2. Local Observation: Agent’s k local observation yk ∈
Y = {1, . . . , Y } is obtained from the observation likelihood
distribution Bxy = P (yk = y|xk = x).

3. Private belief: Using local observation yk, agent k up-
dates its private belief πP

k = (πP
k (i), i ∈ X) where

πP
k (i) = P (xk = i|a1, . . . , ak−1, yk). (2)

Thus the private belief is the posterior distribution of the un-
derlying state given the past actions and current observation.
It is computed by agent k as πP

k = T (πk−1, yk) where

T (π, y) =
ByP ′π

σ(π, y)
, σ(π, y) = 1

′ByP ′π. (3)

Here By = diag(B1y, B2y) is a diagonal matrix for each y ∈
Y. πk−1 denotes the public belief available at time k − 1
(defined in Step 5 below).

4. Agent’s local decision: Agent k then makes local de-
cision ak ∈ A = {1, 2} to minimize myopically its expected
cost. Let c(i, a) denote the cost incurred if the agent picks
local decision a when the underlying state is x = i. Denote
ca = [c(1, a), c(2, a)]′. Then agent k chooses local decision
ak greedily to minimize its expected cost:

ak = a(πk−1, yk) = argmin
a∈A

E{c(x, a)|Hk} = arg min
a∈A

{c′aπP
k }.

5. Social learning Public Belief: Finally agent k broadcasts
its local decision ak. Subsequent agents k̄ > k use decision
ak to update their public belief of the underlying state xk as
follows: Define the public belief πk as the posterior distribu-
tion of the state x given all actions taken up to time k.

πk = E{xk|Gk} = (πk(i), i ∈ X), πk(i) = P (x = i|a1, . . . ak).

Then agents k̄ > k update their public belief according
to the following “social learning Bayesian filter”: πk =
T πk−1(πk−1, ak), where

T π(π, a) =
Rπ

aP ′π

σ(π, a)
, σ(π, a) = 1

′
XRπ

aP ′π (4)

We use the notation T π(·) to point out that the above Bayesian
update map depends explicitly on the belief state π. This is
a key difference compared to classical quickest detection (3)
where the Bayesian update map T (·) does not change with
belief state π. In (4), Rπ

a denotes the diagonal matrix Rπ
a =

diag(Rπ
i,a, i ∈ X) where

Rπ
i,a = P (ak = a|xk = i, πk−1 = π) (5)

denotes the conditional probability that agent k chose action
a given state i. We call Rπ

i,a as the local decision likelihood
probabilities in analogy to observation likelihood probabili-
ties Biy in classical detection.

The local decision likelihood probability matrix Rπ in the
social learning filter (4) is computed as Rπ = BMπ where

Mπ
y,a

�
= P (a|y, π) =

∏
ã∈A−{a} I(c′aByP

′π < c′ãByP ′π).
Here Rπ is a Y × A matrix, By is defined in (3) and I(·)
denotes the indicator function. The likelihood probabilities
Rπ in (5) are an explicit and discontinuous function of the
belief state π – this is stark contrast to the standard quickest
detection problems where the observation distribution is not
an explicit function of the posterior distribution.

Global Costs: At each time k, given the public belief πk ,
let uk = μ(πk) ∈ {1 (announce change and stop), 2 (continue) }
denote the global decision. Below we formulate the costs in-
curred when taking these global decisions uk.

(i) Cost of announcing change and stopping: If global de-
cision uk = 1 is chosen, then the social learning protocol
terminates. If uk = 1 is chosen before the change point τ0,
then a false alarm penalty is incurred. The false alarm event
{xk = 2}∩{uk = 1} = {xk �= 1}∩{uk = 1} represents the
event that a change is announced before the change happens
at time τ0. With f > 0, the expected false alarm penalty is

C̄(πk, uk = 1) = fE{I(xk = 2, uk = 1)|Gk} = [0 f ] πk.

(ii) Delay cost of continuing: If global decision uk = 2 is
taken then the social learning protocol continues to time k+1.
A delay cost is incurred when the event {xk = e1, uk = 2}
occurs, i.e., no change is declared at time k, even though the
state has changed at time k. The expected delay cost is

C̄(πk, uk = 2) = d E{I(xk = e1, uk = 2)|Gk} = de′1πk

where d > 0 denotes the delay cost.
Quickest Time Detection Objective: Define τ = {inf k :

uk = 1}. For each initial distribution π0 ∈ Π(X), and policy
μ, the following cost is associated:

Jμ(π0) = E
μ
π0
{

τ−1∑
k=1

ρk−1C̄(πk, uk = 2)+ρτ−1C̄(πτ , uτ = 1)}.

(6)
Here ρ ∈ [0, 1] denotes an economic discount factor. If ρ =
1, we obtain the classical Kolmogorov–Shiryaev criterion for
detection of disorder [1] is

Jμ(π0) = dE
μ
π0
{(τ − τ0)+} + f P

μ
π0

(τ < τ0). (7)
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Unlike classical quickest detection, the posterior π has dis-
continuous dynamics given by the social learning filter (4).

The goal is to determine the change time τ0 with minimal
cost, that is, compute the optimal policy μ∗ ∈ μ to minimize
(6), where Jμ∗(π0) = infμ∈μ Jμ(π0). Considering the above
cost (6), the optimal stationary policy μ∗ : Π(X) → {1, 2}
and associated value function V̄ (π) are the solution of the
following “Bellman’s dynamic programming equation”

C(π, 1) = 0, C(π, 2) = C̄(π, 2) − f
′π + ρf ′P ′π (8)

μ∗(π) = argmin
u∈U

Q(π, u), Jμ∗(π0) = V (π0) (9)

V (π) = min
u∈{1,2}

Q(π, u), where Q(π, 1) = C(π, 1) = 0

Q(π, 2) = C(π, 2) + ρ
∑
a∈A

V (T π(π, a)) σ(π, a).

3. QUICKEST DETECTION WITH SMALL CHANGE
PROBABILITIES

Here we consider quickest time change detection when the
underlying state has a small probability of change. Theorem 2
and Corollary 1 show that the quickest-time detection policy
for change probability ε, yields a cost that is within O(ε) of
the optimal cost for sequential detection of a constant state.

3.1. Polytope Structure and Main Assumptions

Although in general there are 2Y possible Rπ matrices, we
now show that by introducing assumptions (A1), (A2) and
(S) below, there are only Y + 1 distinct Rπ matrices.

We list the following assumptions.

(A1) The observation distribution Bxy = p(y|x) is TP2. (All
second order minors of matrix B are non-negative).

(S) The local costs c(i, a) incurred by individual agents sat-
isfy c(1, 2) > c(1, 1) and c(2, 2) < c(2, 1).

Assumption (A1) holds for numerous examples, see [9].
Examples include quantized Gaussians, quantized exponen-
tial distributions, Binomial, Poisson, etc. Assumption (S) is
only required for the problem to be non-trivial. If (S) does
not hold and c(i, 1) < c(i, 2) for i = 1, 2, then local decision
a = 1 will always dominate decision a = 2.

Theorem 1. Under (A1), (A2), (S), the belief space can be
partitioned into Y +1 intervals denotedP1, . . . ,PY +1 where

P1 = {π ∈ Π(X) : (c1 − c2)
′B1P

′π > 0} (10)

Pl = {π ∈ Π(X) : (c1 − c2)
′Bl−1P

′π < 0

∩ (c1 − c2)
′BlP

′π > 0}, l = 2, . . . , Y

PY +1 = {π ∈ Π(X) : (c1 − c2)
′BY P ′π < 0}

On each such interval Pl, Rπ, π ∈ Pl is a constant. �

As an immediate consequence of Theorem 1, on each in-
terval we will denote

Rl = Rπ = BM l = BMπ, π ∈ Pl, l = 1, . . . , Y + 1 (11)

ηy = {π ∈ Π(X) : (c1 − c2)
′ByP

′π = 0}, y = 1, . . . , Y.

3.2. Quickest Detection with Small Probability of Change

Here we consider quickest detection with social learning for
the following special case: X = Y = A = {1, 2}, P =[
1 0
ε 1 − ε

]
. Here the change probability ε � 1 is a small

non-negative scalar. The analysis in this subsection proceeds
as follows:
Step 1: For ε = 0, the problem is a simple sequential detec-
tion problem for state 1. We characterize the multi-threshold
behavior of the optimal decision policy in Theorem 2 below.
Step 2: It is then shown that for small ε, the optimal value
function is within O(ε) of the value function for the case of
zero change probability (Corollary 1). So, the optimal pol-
icy computed for zero change probability yields performance
close to that of the optimal quickest detection policy.

Step 1: Sequential Detection of Static State: In line
with above plan, consider the sequential detection problem
for state 1 with social learning with X = Y = A = {1, 2},
P = I . The state x is a random variable chosen at k = 0
with distribution π0 and remains constant for k > 0. The
goal is to detect and announce state 1 if x0 = 1 based on
noisy observations. The global decision uk = μ(πk) ∈
{1 (stop) , 2 (continue)} is a function of the public belief πk.

The 2-dimensional belief state π = [1 − π(2), π(2)] is
parametrized by the scalar π(2) ∈ [0, 1], i.e., Π(X) is the in-
terval [0, 1]. Let [1− ηy(2), ηy(2)] denote the belief state cor-
responding to ηy . If (A1) and (S) hold, then P3 = (0, η2(2)),
P2 = (η2(2), η1(2)), P1 = (η1(2), 1).

Define q = T η1(η1, 1). The following lemma that charac-
terizes useful structural properties of the social learning filter.

Lemma 1. Consider the social learning filter (4). As-
sume (A1), (S) hold. If B is symmetric, then η1 and η2

are fixed points of the composite Bayesian map: η1 =
T q(T η1(η1, 1), 2), η2 = T q((T η2(η2, 2), 1)

The implication of the above lemma is that Π(X) can be
partitioned into 4 intervals, namely [e1, η2), [η2, q), [q, η1)
and [η1, e2]. The main result below characterizes the multi-
threshold global decision policy μ∗(π) on these 4 intervals.

Theorem 2. Consider the sequential detection problem for
ε = 0. Suppose agents make local decisions via social learn-
ing. Assume (A1), (S) hold. The optimal global decision pol-
icy μ∗(π) has the following properties:
(i) For π ∈ P1 ∪ P3, μ∗ has a threshold structure:

μ∗(π) =

{
2 if π(2) > π∗(2)

1 otherwise
where π∗(2) =

d

f(1 − ρ) + d

Also for π ∈ P1 ∪ P3, the value function is V (π) =
min{0, C(π, 2)/(1 − ρ)}.
(ii) If B is symmetric, then for π ∈ P2, the global decision
policy has the following structure:
(a) For π ∈ [η2(2), q(2)], V (π) is concave and there is at
most one interval where μ∗(π) = 1.
(b) For π ∈ [q(2), η1(2)], V (π) is concave and there is at
most one interval where μ∗(π) = 1. �
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The implication of the above theorem is that the optimal
policy has up to three thresholds.

Step 2: Quickest Time Detection bound for small ε:
Given the characterization in Theorem 2 for ε = 0, we now
consider the quickest change detection problem for small ε.
Let Vμ∗

ε
(π) denote the cost incurred by the optimal policy μ∗

ε

with transition probabilities P ε
22 = 1 − ε. Denote the three

intervals Pε
l , l = 1, 2, 3, defined in (10). The following result

bounds |Vμ∗

0
(π) − Vμ∗

ε
(π)|. Note that μ∗

0(π) is characterized
in Theorem 2 and P 0 = I .

Corollary 1. Consider the social learning quickest detection
problem with small probability of change. Then, for initial be-
lief π ∈ Pε

l ∩P
0
l , l = 1, 2, 3, the optimal policy μ∗

0 (character-
ized in Theorem (2)) has a total cost Vμ∗

0
(π) that constitutes

an O(ε) upper-bound to the optimal cost V̄μ∗

ε
(π) incurred in

the quickest detection problem. More specifically,

V̄μ∗

0
(π) − V̄μ∗

ε
(π) ≤

4ρε

(1 − ρ)2
max(d, f). � (12)

Discussion: The implication of (12) is that the simple pol-
icy μ∗

0(π) of Theorem 2 is near optimal for quickest time de-
tection with social learning when ε is small. The above bound
is tight in the sense that for ε = 0, the optimal costs V̄μ∗

0
(π)

and V̄μ∗

ε
(π) coincide. The proof of Corollary 1 follows from

Theorem 2 of [10]. Theorem 2 of [10] shows that

V̄μ∗

0
(π) ≤ V̄μ∗

ε
(π)+

2ρ

(1 − ρ)2
‖C̄(π, u)‖∞ sup

i

‖[P ε−P 0]ij Rl
a‖1

(13)
where the ‖ · ‖1 induced matrix norm is with respect to the
(j, a) elements. Since from Theorem 2, the value function is
piecewise linear, (13) applies. Clearly

sup
i

‖[P ε−P 0]ij Rl
a‖1 = ε max(B11+B21, B12+B22) ≤ 2ε.

Substituting ‖C̄(π, u)‖∞ = max(d, f) in (13) yields (12).

4. NUMERICAL RESULTS
Example 1: Consider X = Y = A = {1, 2}, ρ = 0.8,

d = 1.8, f = 2, B =

[
0.85 0.15
0.15 0.85

]
, c =

[
1 2
−1 −3.57

]
.

Fig.2 shows the optimal policies μ∗
0 (Theorem 2) and

μ∗
ε (optimal quickest detection policy) together with optimal

costs Vμ∗

0
(π) and Vμ∗

ε
(π) for change probability ε = 0.005.

As can be seen the quickest detection optimal policy and
costs are very close to that specified by Theorem 2.
Example 2: Here we illustrate the multiple threshold poli-
cies inherent in social learning (this example was mentioned
in Sec.1). We chose the social learning model with pa-
rameters X = {1, 2}, Y = {1, 2, 3}, A = {1, 2}, B =[
0.9 0.1
0.1 0.9

]
, P =

[
1 0

0.05 0.95

]
, c =

[
1 2
−1 −3.57

]
.

For the global quickest time detection parameters we chose
ρ = 0.99, delay d = 1.25, false alarm vector f = 3e2 (i.e.,
f = 3). It is easily checked that (A1) and (S) hold.

The optimal policy μ∗(π) is shown in Fig.1(a) and com-
prises of a triple threshold policy. The ‘x’ in Fig.1(a) and (b)
are the values of η2(2), q(2) and η1(2), respectively.
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Fig. 2. Optimal decision policy for quickest time change de-
tection with social learning and small probability of change.
The policies and optimal costs for ε = 0.005 (solid line) are
very close to ε = 0 (broken line).

5. CONCLUSIONS
Motivated by understanding how local and global decision
makers interact, this paper analyses quickest time detection
when agents perform social learning. It was shown that
the optimal global decision policy has a remarkable multi-
threshold behavior. The optimal threshold policy was charac-
terized explicitly in Theorem 2 and Corollary 1. Numerical
examples of the multi-threshold behavior were presented.
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