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ABSTRACT

In this paper we present a novel compressed sensing (CS) algo-
rithm for the recovery of compressible, possibly time-varying, sig-
nal from a sequence of noisy observations. The newly derived
scheme is based on the acclaimed unscented Kalman filter (UKF),
and is essentially self reliant in the sense that no peripheral op-
timization or CS algorithm is required for identifying the under-
lying signal support. Relying exclusively on the UKF formula-
tion, our method facilitates sequential processing of measurements
by employing the familiar Kalman filter predictor corrector form.
As distinct from other CS methods, and by virtue of its pseudo-
measurement mechanism, the CS-UKF, as we termed it, is non
iterative, thereby maintaining a computational overhead which is
nearly equal to that of the conventional UKF.

Index Terms— Compressed sensing, Kalman filter, Un-
scented Kalman Filter, Sparse signal recovery, Sigma point filter

1. INTRODUCTION

Recent studies have shown that sparse signals can be recovered ac-
curately using less observations than what is considered necessary
by the Nyquist/Shannon sampling principle; the emergent theory
that brought this insight into being is known as compressed sens-
ing (CS) [1]. The essence of the new theory builds upon a new data
acquisition formalism, in which compression plays a fundamental
role. From a signal processing standpoint, one can think about a
procedure in which signal recovery and compression are carried
out simultaneously, thereby reducing the amount of required ob-
servations. Sparse, and more generally, compressible signals arise
naturally in many fields of science and engineering. A typical ex-
ample is the reconstruction of images from under-sampled Fourier
data as encountered in radiology, biomedical imaging and astron-
omy Other applications consider model-reduction methods to en-
force sparseness for preventing over-fitting and for reducing com-
putational complexity and storage capacities.

The recovery of sparse signals is in general NP-hard [1].
State-of-the-art methods for addressing this optimization problem
commonly utilize convex relaxations, non-convex local optimiza-
tion and greedy search mechanisms. Convex relaxations are used
in various methods such as LASSO, the Dantzig selector, basis
pursuit and basis pursuit de-noising, and least angle regression.
Non-convex optimization approaches include Bayesian method-
ologies such as the relevance vector machine, otherwise known as
sparse Bayesian learning. Notable greedy search algorithms are
the matching pursuit (MP), the orthogonal MP, and the orthogonal
least squares.

CS theory has drawn much attention to the convex relaxation
methods. It has been shown that the convex l1 relaxation yields an

exact solution to the recovery problem provided two conditions are
met: 1) the signal is sufficiently sparse, and 2) the sensing matrix
obeys the so-called restricted isometry property at a certain level. A
complementary result guarantees high accuracy when dealing with
noisy observations, yielding recovery ‘with overwhelming proba-
bility’. To put it informally, it is likely for the convex l1 relaxation
to yield an exact solution provided that the involved quantities, the
sparseness degree s, and the sensing matrix dimensions m × n
maintain relation of the type s = O(m/ log(n/m)).

The Bayesian CS (BCS) approach has been introduced in [2].
As opposed to the conventional non-Bayesian methods, the
Bayesian CS has the advantage of providing the complete statistics
of the estimate in the form of a posterior probability density func-
tion (pdf). Adopting this approach, however, suffers from the fact
that rarely one can obtain a closed-form expression of the posterior
and therefore approximation methods should be utilized.

1.1. Sequential and Dynamic CS

The basic CS framework is mainly concerned with parameter esti-
mation, or time-invariant signals. A tremendous research effort is
yet being made for developing efficient CS techniques that would
be able to perform in high dimensional non dynamic settings. Only
recently, CS has been applied for the recovery of time-varying
sparse signals (i.e., sparse random processes). There is no won-
der why there is such unbalance between the two realms of non-
dynamic and dynamic CS. The fundamentals of CS build upon
convex optimization perspectives and as such it is conventionally
assumed that the measurements are available in a batch form. This
obviously restricts the theory to such signals for which the com-
plexity does not considerably increase over time. Furthermore, the
treatment of process dynamics, which are normally governed by
probabilistic transition kernels, is not a straightforward task as far
as optimization approaches are concerned.

In light of the above, a much more practical approach for
treating dynamic sparse signals would be somehow based on state
filtering methodologies. Followed by the pioneering works of
Vaswani [3], and Carmi et al [4, 5], which show how the Kalman
filter (KF) can be used in this respect, several dynamic CS schemes
have been proposed over the last two years. Thus, the work in [6]
derives a l1-regularized recursive least squares estimator. This
type of estimator is capable of dealing with dynamic signals and
support variations via the use of a “forgetting factor”. In other
works, the LASSO is amended for performing in dynamic settings
with possible abrupt changes in the signal support [7, 8].

The KF algorithm constitutes a vital part in the works of [9],
[10], and [11]. Indeed, the KF is elegant and simple and above all is
the linear optimal minimum mean square error (MMSE) estimator
irrespective of noise statistics. Despite its appealing features, rarely
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it is used in its standard formulation which is primarily designed
for linear time-varying models. Modifying the KF structure and
extending its capabilities have already become a common practice
in many engineering and scientific fields. The resulting KF-based
methods are vastly used for nonlinear filtering, constrained state
estimation, distributed estimation, learning in neural networks, and
fault-tolerant filtering.

The KF-based methodologies for dynamic CS can be divided
into two broad classes: hybrid, and self-reliant. Whereas the for-
mer class refers to KF-based approaches involving the utilization of
peripheral optimization schemes for handling sparseness and sup-
port variations, the latter class refers to methods that are entirely
independent of any such scheme. Hybrid KF-based approaches re-
fer to works such as [3, 9–11]. The only self-reliant KF method
available to that end is the one of [4, 5].

The self-reliant KF method in [5] benefits from ease of imple-
mentation. It avoids intervening in the KF process which thereby
maintains the filtering statistics as adequate as possible. The key
idea behind it is to apply the KF in constrained filtering settings us-
ing the so-called pseudo-measurement technique. It may, however,
exhibit an inferior performance when improperly tuned or when in-
sufficient number of iterations had been carried out. In this work,
we improve over [5] by employing the unscented KF (UKF) [12]
for the pseudo-measurement update stage.

1.2. Why Unscented Compressed Sensing

The resulting UKF-based CS algorithm has the following benefits:
1) Self-reliant and easy to implement, 2) Recursively updates the
mean and covariance of the filtering probability density function
(pdf), 3) Facilitates sequential processing of measurements, 4) Non
iterative - as opposed to [5] no reiterations are needed at any stage,
4) Its computational complexity is nearly equal to that of a standard
UKF.

2. SPARSE SIGNAL RECOVERY

Consider an R
n-valued random discrete-time process {xk}∞k=1

that is sparse in some known orthonormal sparsity basis ψ ∈
R

n×n, that is, zk = ψTxk, sk := ‖zk‖0 < n, where ‖ zk ‖0
denotes the cardinality of the signal support at time k, i.e., the
number of non vanishing entries in zk. Assume that zk evolves
according to

zk+1 = Azk +wk, z0 ∼ N (μ0, P0) (1)

where A ∈ R
n×n is the state transition matrix and {wk}∞k=1 is a

zero-mean white Gaussian sequence with covariance Qk � 0. The
signal xk is measured by the Rm-valued random process

yk = Hxk + ζk = H ′zk + ζk (2)

where {ζk}∞k=1 is a zero-mean white Gaussian sequence with co-
variance Rk � 0, and H := H ′ψT ∈ R

m×n.
Letting Yk := [y1, . . . , yk], our problem is defined as follows.

We are interested in finding a Yk-measurable estimator, x̂k, that is
optimal in some sense. Often, the sought after estimator is the one
that minimizes the mean square error (MSE) E

[‖ xk − x̂k ‖22
]
. It

is well-known that if the linear system (1), (2) is observable then
the solution to this problem can be obtained using the KF. On the
other hand, if the system is unobservable, then the regular KF algo-
rithm is useless; if, for instance,A = In×n, then it may seem hope-
less to reconstruct xk from an under-determined system in which
m < n and rank(H) < n.

2.1. Compressed Sensing

It is well known that in the deterministic case (i. e., when z is a
parameter vector), one can accurately recover z (and therefore also
x, i.e., x = ψz) by solving the optimization problem [1]

min ‖ ẑ ‖0 s.t.
k∑

i=1

‖ yi −H ′ẑ ‖22≤ ε (3)

for a sufficiently small ε.
Following a similar rationale, in the stochastic case the sought-

after optimal estimator satisfies

min ‖ ẑk ‖0 s.t. Ezk|Yk

[‖ zk − ẑk ‖22
] ≤ ε (4)

Unfortunately, the above optimization problems are NP-hard and
cannot be solved efficiently. Surprisingly enough, it has been
shown in [1] that if the underlying signal is sufficiently sparse
and the sensing matrix H ′ obeys the so-called restricted isometry
property (RIP) to within a certain tolerance then the solution of
the combinatorial problem (3) can almost always be obtained by
solving the constrained convex relaxation

min ‖ ẑ ‖1 s.t.
k∑

i=1

‖ yi −H ′ẑ ‖22≤ ε (5)

This is a fundamental result in CS theory [1]. The main idea is that
the convex l1 minimization problem can be efficiently solved using
a myriad of existing methods. Additional insights provided by CS
are related to the construction of sensitivity matrices that satisfy
the RIP. These underlying matrices are random by nature, which
sheds a new light on the way observations should be sampled.

3. UNSCENTED CS

The derivation of the improved Kalman filtering algorithm in this
section is based on the notion of pseudo-measurement (PM) [5].
The key idea is fairly simple and has been vastly employed for con-
strained state estimation. Thus, instead of solving the l1-relaxed
variant of the constrained problem (4), a non constrained minimiza-
tion

min
ẑk

Ezk|Yk

[‖ zk − ẑk ‖22
]

(6)

is considered with the observation set Yk augmented by an addi-
tional fictitious measurement satisfying

0 = ‖zk‖1 − vk (7)

where vk is a Gaussian random variable with some predetermined
mean and variance, μk and rk, respectively. The above PM is in
essence the stochastic analogous of the l1 constrain imposed by the
underlying dual problem [13].

The role of (7) can be better apprehended by realizing that vk
is aimed to capture the first two statistical moments of the ran-
dom variable moderating the sparseness degree, ‖zk‖1. In general,
computation of the exact statistics of ‖zk‖1 may be analytically in-
tractable and therefore either approximations or tuning procedures
should be utilized for determining preferred values for the mean
and variance of vk . We note, however, that the resulting method is
rather robust to the underlying parameters as demonstrated in our
previous work [5].
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3.1. Adaptive Pseudo-Measurement Approximation

Equation (7) cannot be straightforwardly processed in the frame-
work of Kalman filtering as it is nonlinear. In practice, this equa-
tion is substituted with the following approximation [5]

0 = sign(ẑk)
T zk − v̄k (8)

where sign(ẑk) ∈ R
n is a Yk-measurable vector comprising of

the sign of entries in ẑk. The effective measurement noise v̄k is
zero-mean Gaussian with a variance obeying

r̄k = O
(
‖ẑk‖22 + gTPkg

)
+ rk (9)

where g ∈ R
n is some (tunable) constant vector, and Pk is the

estimation error covariance of the supposedly unbiased estimator
ẑk, that is Pk = E

[
(zk − ẑk)(zk − ẑk)

T
]
. For brevity, the proof

of the conjecture (9) is omitted here, and would be provided else-
where.

3.2. Sigma Point Filtering

The UKF and its variants, which are broadly referred to as sigma
point Kalman filters, parameterize the filtering pdf via the first two
statistical moments, namely the mean and covariance, thus pro-
viding an approximation to the optimizer of (6) (i.e., the condi-
tional mean). These methods amend the Kalman filter algorithm
for handling generalized nonlinear process and measurement mod-
els. As distinct from the extended KF (EKF) which employs in-
famous linearization techniques, the UKF relies on the so-called
unscented transformation (UT), otherwise known as statistical lin-
earization. This approach is acclaimed for its ease of implementa-
tion and its improved estimation performance owing to a rather
adequate computation of the underlying covariance matrix. By
virtue of its mechanism, the UKF alleviates filtering inconsisten-
cies which in most cases results in improved robustness to model
nonlinearities and initial conditions.

The UT can be readily understood by considering a simple ex-
ample. Let z ∼ N (μ,Σ) be a random vector of dimension n, and
let also f(·) : Rn → R

m be some function. Suppose that we are
interested in computing the mean and covariance of f(z) to within
a certain accuracy. It turns out that a fairly reasonable approxima-
tion of these quantities can be made by carefully choosing a finite
set of L instrumental vectors Zi ∈ R

n, i = 1, . . . , L, and cor-
responding weights wi. The UT essentially provides a convenient
deterministic mechanism for generating L = 2n + 1 such points
which are known by the name sigma points. As Σ is a symmet-
ric matrix it can be decomposed as Σ = DDT (e.g., Cholesky
decomposition). The sigma points are then given as

Zi = μ+
√
LDi, i = 0, . . . , n

Zi = μ−√
LDL−i, i = n+ 1, . . . , 2n

(10)

where Di denotes the ith column of D, and D0 := 0. Note that
the sample mean and sample covariance of Zi, i = 0, . . . , 2n, are
μ and Σ, respectively (i.e., this set of points captures the statistics
of z). Now, the mean and covariance of f(z) can be approximated
by

μ̂f =

2n∑
i=0

wif(Zi), Σ̂f =

2n∑
i=0

wif(Zi)f(Zi)T − μ̂f μ̂
T
f (11)

3.3. CS-UKF: Compressible Sigma Point Filter

In this work, we amend the UKF for handling sparse and compress-
ible signals. The resulting algorithm, the CS-UKF as we termed it,

is a Bayesian CS algorithm that is capable of estimating compress-
ible dynamic signals sequentially in time. The sparseness con-
straint is imposed in a manner similar to [5] via the use of the
PM approximation (8), however, without the need for reiterating
the PM update. This in turn maintains a computational overhead
similar to that of a standard UKF.

The CS-UKF consists of the two traditional UKF stages, the
prediction and update, along with an additional refinement stage
during which the sigma points gradually become compressible. In
particular, after a single standard UKF cycle the sigma points are
individually updated in a manner similar to the PM update stage
in [5].

Let Pk|k and Zi
k|k be the updated covariance and the ith sigma

point at time k, respectively (i.e., after the measurement update).
A set of compressible sigma points at time k is thus given by

Z̄i
k|k = Zi

k|k − Pk|ksign(Z
i
k|k)‖Zi

k|k‖1
sign(Zi

k|k)
TPk|ksign(Zi

k|k) + r̄ik
(12)

r̄ik = α(‖Zi
k|k‖22 + gTPkg) + rk (13)

for i = 0, . . . , 2n, where α is some positive tuning parameter.
Once the set {Z̄i

k|k}2ni=0 is obtained, its sample mean and sample
covariance (see (11)) substitutes the updated mean and covariance
of the UKF at time k.

We note that if the process and measurement models are linear
then the prediction and update stages of the UKF can be substituted
with those of the standard KF. In this case, the resulting CS-UKF
algorithm would consist of the KF prediction and update stages
together with a UKF-based PM refinement phase.

4. NUMERICAL STUDY

The CS-UKF is employed for tracking a time-invariant compress-
ible signal with n = 200 entries out of which only 10 are signifi-
cant in terms of their magnitude. The performance of the CS-UKF
is compared with that of the CSKF [5], and of the BCS [2]. As
the latter method, the BCS, is non sequential, in our experiments
it is fed at any give time with the whole batch of measurements
available up to the specific instance. Both KF variants process a
single measurement at a time. The negligible entries of the signal
are uniformly sampled from the interval [−0.02, 0.02].

The recovery performance based on 100 Monte Carlo (MC)
runs of all methods over a time interval of 100 steps is depicted in
Fig. 1. Thus, the MC-computed mean estimation errors and stan-
dard deviations (summed up for all entries) of the BCS and the
CSKF are shown in the left panel in this figure. The KF-computed
standard deviations are provided by the dashed lines. The right
panel in this figure compares the same quantities, however for the
BCS and the CS-UKF. The striking observation from this figure
is that the mean performance of the BCS and the KF-based CS
approaches nearly coincide. The KF-based approaches, however,
process a single measurement at a time which thereby maintains
around the same (low) computational overhead at every time step.
The BCS, on the other hand, deals with an increased complexity
over time. As opposed to the CSKF which employs 40 PM itera-
tions and covariance updates per measurement, the CS-UKF uses
only one iteration per sigma point and two covariance updates per
measurement (which accounts for measurement update and PM re-
finement).

Not least important, Fig. 1 shows that both the CSKF and the
CS-UKF are nearly consistent in the sense that their computed vari-
ances are greater than the MC-computed ones. In this respect, it
seems that the CS-UKF manages to capture fairly accurately the
actual estimation error variance from around the 65 time step, as
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its computed standard deviations approximately concur with the
MC-computed ones from that point onwards.

The recovery performance of the 3 methods is shown for var-
ious signal compressibility degrees in Fig. 2. The upper left and
upper right panels in this figure show the normalized root MSE
(RMSE) (i.e., ‖zk−ẑk‖2/‖zk‖2) based on 20 MC runs of the 3 CS
methods. The upper left panel illustrates the recovery performance
in a compressible setting where the negligible entries of the signal
are uniformly sampled from [−0.1, 0.1]. The upper right panel, on
the other hand, depicts the recovery performance when the signal
is perfectly sparse. Both these panels clearly show that the estima-
tion accuracy of all methods nearly coincide after roughly 95 time
steps (i.e., 95 observations). In the compressible case the KF meth-
ods attain accuracy which is either equal or better than that of the
BCS.

This trend is further manifested in the bottom panel in Fig. 2
where the mean normalized RMSE (i.e., averaged over the entire
running time) is shown for various compressibility levels. The neg-
ligible entries of the underlying compressible signal are uniformly
sampled from an expanding interval [−ε, ε], where ε = 0.02j,
j = 1, . . . , 10, is referred to as the compressibility index. This
panel clearly demonstrates the decisive superiority of the CS-UKF
over the CSKF (in terms of computational efficiency), and over the
BCS both in terms of computational efficiency and accuracy, for an
increasing compressibility index starting at ε ≈ 0.1.
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Fig. 1. Mean estimation errors and standard deviations of the
BCS (red lines), CSKF (left panel only), and the CS-UKF (right
panel only).

5. CONCLUDING REMARKS

A novel compressed sensing method is presented for the recov-
ery of sparse/compressible, possibly time-varying, signals from
a sequence of noisy observations. The newly derived scheme is
based on the unscented Kalman filter (UKF) employing the so-
called pseudo measurement technique for imposing the underly-
ing sparseness constraint. By virtue of its UKF mechanism, the
resulting CS-UKF method, is adequate for sequential processing
of measurements and is capable of accurately capture the recovery
error variances. The computational complexity of the CS-UKF is
nearly equal to that of a standard UKF.
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