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ABSTRACT
We consider a class of inverse problems where it is possible

to aggregate the results of multiple experiments. This class

includes problems where the forward model is the solution

operator to linear ODEs or PDEs. The tremendous size of such

problems motivates the use dimensionality reduction (DR)

techniques based on randomly mixing experiments. These

techniques break down, however, when robust data-fitting for-

mulations are used, which are essential in cases of missing

data, unusually large errors, and systematic features in the data

unexplained by the forward model. We survey robust methods

within a statistical framework, and propose a sampling opti-

mization approach that allows DR. The efficacy of the methods

are demonstrated for a large-scale seismic inverse problem us-

ing the robust Student’s t-distribution, where a useful synthetic

velocity model is recovered in the extreme scenario of 60%

corrupted data. The sampling approach achieves this recovery

using 20% of the effort required by a direct robust approach.

Index Terms— inverse problems, seismic inversion,

stochastic optimization, robust estimation

1. INTRODUCTION

Consider a generalized data fitting scheme where we conduct

m experiments and record the corresponding measurements.

We encode the parameters for each of them experiments in the

matrix Q = [q1, q2, . . . , qm], and encode the measurements

corresponding to each experiment in D = [d1, d2, . . . , dm].
We then fit model parameters x via the model

D = F (x;Q) + E , (1)

where E captures the discrepancy between observations and

predictions. We assume that F is linear in Q, which is true for

all models where F is the solution operator to a linear differ-

ential equation with boundary conditions, and the columns of

Q comprise the right-hand sides of these equations.
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The maximum-likelihood approach to estimation can be

generically expressed by the data-fitting problem

minimize
x

ψ(R(x)), (2)

where

R(x) = D − F (x;Q) := [ r1(x), . . . , rm(x) ]

is the residual, and ψ is the negative log-likelihood of the

underlying distribution for E . One interpretation of this op-

timization problem is to choose parameters x that maximize

the likelihood that R(x) are samples of the random variable

E . Regularization terms may be needed, depending on the

application.

We are motivated by the full-waveform inversion (FWI)

problem in geophysics, where F is the solution operator for

the Helmholtz equation, the vectors qi encode information for

the ith source experiment, and the vectors di contain the corre-

sponding measurements. A typical survey in exploration seis-

mology contains thousands of large-scale experiments. The

aim is to recover the velocity field on a grid over a 2- or 3-

dimensional volume. This leads to an overwhelming amount

of data that consumes months of CPU time on industrial-sized

clusters.

Dimensionality reduction (DR) is a technique where entire

groups of experiments are fused into “super” experiments (e.g.,

“super shots” or “random source encoding”, in the seismic

context) with the overall effect of reducing the problem size

[1, 2, 3]. A least-squares (LS) fit for (1) is a popular choice,

largely because of the implicit assumption that the error E is

normally distributed. A notable algorithmic benefit of an LS

fit is that the DR technique can be naturally interpreted as a

form of stochastic optimization. However, the LS approach is

unsuitable for noisy or missing data, as often encountered in

practice. Similarly, the LS formulation breaks down in the face

of systematic features in the data unexplained by the model

F . As a result, tremendous effort goes into data cleaning and

increasing the complexity (and cost) of the model.

Our approach is based on a robust fit of (1), where E is

modeled using a distribution with heavy tails, e.g., a Student’s

t-distribution, first used by [4] for data fitting. This approach

is based on robust statistics, where the aim is to inoculate

the fitting process against outliers [5, 6, 7]. However, the
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(a) True synthetic velocity model: 2× 7 km area.

Velocity varies between 1.5 and 4.5 km/s.

0 2 4 6

0

1

2

(b) Starting velocity model
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(c) Recovery based on a Gaussian error model
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(d) Recovery based on a Student’s t-distribution

Fig. 1. Seismic full waveform inversion with 60% corrupted

data.

special form of least-squares, which allowed us to use DR

as an algorithmic framework, is not available in the robust

context. Instead, we use a semistochastic method based on

randomizing batches of experiments.

2. SEISMIC INVERSION

The FWI problem is classically formulated as

minimize
x

ψ(R(x)) := ‖R(x)‖2F , (3)

which is a nonlinear LS problem. In this application,

F (x;Q) =MU and H(x)U = Q, (4)

where H(x) is the Helmholtz operator, U is the wavefield

induced by the source experiments encoded in Q, and M
restricts U to the receiver positions on the surface [8].

The terrific computational cost in solving this problem can

be illustrated by describing the work involved in evaluating a

single gradient. The adjoint-state method requires the solution

of the second equation in (4), and a corresponding adjoint

equation involving H∗. This translates to the solution of 2m
PDE solves per frequency. The simple test problem, based on

a synthetic velocity model shown in Fig. 1, has m = 141 and

17 frequencies, for a total of 4,794 PDE solves for a single

gradient evaluation. Industrial problems easily have thousands

of experiments over tens of frequencies.

Fig. 1 illustrates the main weakness of LS inversion. In

this example, we use (3) to recover the velocity model shown

in Fig. 1(a) when 60% of the data is corrupted. This might

correspond to the situation in practice where many receivers

malfunction. The velocity model shown in Fig. 1(c), recovered

using a quasi-Newton method, which represents the state-of-

the-art in this application [8], is clearly not a good representa-

tion of the underlying model.

3. ROBUST ESTIMATION

The problems encountered in the LS inversion of the last sec-

tion can be interpreted in a statistical framework by consid-

ering the “tail heaviness” of the underlying distribution for

the errors E . The Gaussian density, implied by the choice of

the LS objective function, decays as exp(−τ2), where τ is the

distance from the mean. As a result, outliers are extremely

rare in the Gaussian model, e.g., the probability of seeing an

event more than 8 standard deviations from the mean is of the

order 10−15. The inversion process, therefore, unnecessarily

weighs outliers at the expense of good data.

−4 −3 −2 −1 0 1 2 3 4
vN(0, 1)

L(0, 1)

T (ν = 1)

−4 −3 −2 −1 0 1 2 3 4
v0.5v2k√

2|vk|
log(1 + v2k)

Fig. 2. Densities and penalties.

A robust approach to inverse problems is derived by assum-

ing a distribution that has heavier tails. Examples include the

�1-Laplacian and Student’s t- distributions, among others; see

Fig. 2. Among the distributions that are supported on the entire

space, the heaviest tails possible are proportional to 1/τd+2,

where d is the problem dimension; the Student’s t is one such

example.

The parametric form of the chosen distribution, through

the maximum-likelihood approach, determines the particular

form of the inverse problem analogous to (3): Gaussian corre-

sponds to the 2-norm, �1-Laplacian corresponds to the 1-norm,
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and Student’s t corresponds to the objective log(1 + τ2). The

first two functions are convex; the last is nonconvex. In many

applications it is crucial to preserve the convexity of the inverse

problem. But when F is nonlinear, as for example FWI in §2,

convexity of the inverse problem is highly unlikely. In such

cases, we can be free to ignore issues related to nonconvexity,

and instead focus on the additional robustness afforded by the

tail heaviness of the Student’s t-distribution. See [9] for a com-

parative study with other heavy-tailed distributions. Figs. 1(c)

and (d) show the benefits of the robust approach based on the

Student’s t against one based on a Gaussian model.

4. STOCHASTIC OPTIMIZATION

Stochastic optimization is a technique especially suited for

large scale problems like FWI, where gradient computations

with full data are prohibitively expensive. Recently developed

methods exploit the special structure of (3) in order to develop

a sampling scheme that randomly aggregates the experiments

{qi} and corresponding observations {di} into a set of super

experiments [3]. As a result, the reduced problem involves

only a fraction of the computational effort for each gradient

evaluation.

The linearity of F (x;Q) in Q allows us to exploit this

approach because R(x)W = DW − F (x;QW ). This cor-

responds to aggregating observations and experiments into

matrices DW and QW with k columns each, where k � m.

This aggregation sampling scheme meshes well with the Frobe-

nius norm, since it is induced by an inner product. Define the

sampled function by

ψW (R(x)) := ψ(R(x)W ) = ‖R(x)W‖2F , (5)

where W is a matrix of k mixing vectors, where k can be as

small as 1. If E[WWT ] = I , then

EW [ψW (R(x))] = E 〈R(x)W,R(x)W 〉
= E

〈
R(x)TR(x),WWT

〉

=
〈
R(x)TR(x),E[WWT ]

〉

= ‖R(x)‖2F = ψ(R(x)) .

(6)

Also, by the linearity of the gradient,

EW [∇ψW (R(x))] = ∇EW [ψW (R(x))] = ∇ψ(R(x)). (7)

In words, the expectation of the approximate objective and

gradient are equal to the true objective and gradient. As a result

of this property, this sampling scheme can be used within the

framework of a stochastic optimization method.

In general, stochastic gradient methods for minimizing

differentiable functions f can be generically expressed by the

iteration

xk+1 = xk − αk(sk + ek),

where sk is any sufficient descent direction for f , i.e.,

sTk∇f(xk) ≤ −μ‖∇f(xk)‖2 and μ is a positive constant,

and ek is a random error. If the function has a Lipschitz

gradient, E[ek] = 0, E[‖ek‖2] is bounded, and
∑

k αk = ∞
and

∑
k α

2
k <∞, then ∇f(xk) → 0; see [10, Prop. 3].

We now consider search directions based on the gradient

of the sampled function (5), which in the stochastic optimiza-

tion framework corresponds to sk + ek = ∇ψW (R(xk)).
By (7), we have EW [∇ψW (R(x))] = ∇ψ(R(x)), which im-

plies sk = ∇ψ(R(xk))—which is clearly a direction of suffi-

cient descent—and E[ek] = 0, as required.

This motivation breaks down if we consider more general

distributions for E , which necessarily changes the definition

of ψ in (3). However, as long as the errors made across exper-

iments are independent and identically distributed, then ψ is

separable across the columns of R(x), i.e.,

ψ(R(x)) =
m∑
i=1

ρ(ri(x)) (8)

for some function ρ. For example, a Gaussian distribution

for E gives ρ(ri(x)) = ‖ri(x)‖22, as in (3), Student’s t gives

ρ(ri(x)) =
∑

j log(k + rij(x)
2), and �1-Laplacian gives

ρ(ri(x)) = ‖ri(x)‖1.

To design a DR technique that works for this general case,

we again consider the approximation (5). For general ψ, how-

ever, the assumption EW [WWT ] = I no longer suffices to

prove (6) and (7). Fortunately, we can still recover these results

by choosing a particular type of distribution for the mixing-

matrix W , as shown in the next theorem.

Theorem 1. Suppose that the mixing-matrix W (with k ≤ m)
is chosen to be a uniform random selection of columns of the
scaled m×m identity matrix m

k I . Then for any objective ψ
given by (8),

EW [ψW (R(x))] = ψ(R(x)) (9a)

and

EW [∇ψW (R(x))] = ∇ψ(R(x)). (9b)

Proof. Note that

EW [ψW (R(x))] = EW [ψ(R(x)W )]

= EW

[∑k
j=1 ρ((R(x)W )j·)

]

=
∑k

j=1 EW [ρ((R(x)W )j·)]

= m
k

∑k
j=1 Ej [ρ(ri(j)(x))],

where i(j) is randomly selected without replacement. Since

i(j) is equally likely to be any particular column index, we

necessarily have

m
k Ej [ρ(ri(j)(x))] =

m
k

1
m

∑m
i=1 ρ(ri(x))

= 1
kψ(R(x)).

Because there are k terms in the sum, and each summand

is equal to 1
kψ(R(x)), (9a) holds. The relationship in (9b)

follows immediately from the linearity of the gradient.
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Note that the particular choice of W in Theorem 1 sat-

isfies EW [WWT ] = I , which was the property we used in

deriving (6) and (7).

The subsampling strategy suggested by Theorem 1 gives

us a range of choices: at one extreme, we sample only a single

column of R(x) at each iteration, which corresponds to k = 1;

a less extreme choice is to choose a k that is small relative tom.

Both of these cases can be considered under the umbrella of

incremental gradient methods [10, 11] for minimizing general

functions f . In that framework, even if we make the favorable

assumption that f is strongly convex, it is only possible to

guarantee that this class of methods generates iterates xk that

converge sublinearly to a solution x∗, i.e.,

‖xk − x∗‖2 ≤ O(1/k).

An alternative approach that gradually increases the sample

size as the iterations progress is proposed in [12]. The result is

a sampling method that interpolates between the one-at-a-time

incremental gradient method at one extreme, and using the full

gradient at the other. By choosing k to grow at a certain rate,

it is possible to guarantee that the iterates xk converge linearly,

i.e.,

‖xk − x∗‖2 ≤ O(γk) for some γ < 1.

In practice, it is virtually impossible to guarantee convex-

ity of ψ(R(x)) unless ψ is convex and R(x) is linear; this is

not the case for many inverse problems. Moreover, the loss

functions corresponding to heavy-tailed distributions, such as

Student’s t, are nonconvex [9, Theorem 2.1]. Nonetheless, the

theory for the strongly convex case is also supported by empir-

ical evidence, where sampling strategies tend to outperform

basic incremental gradient methods [12].

Fig. 3 compares the sampling and direct approaches by

showing how the relative model error ψ(R(xk))/ψ(R(x∗) de-

creases as a function of effective passes through the data. The

result in Fig. 1(c), obtained using the sampling approach, con-

sumed 1/5th of the computational effort of a direct approach.
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