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ABSTRACT

This paper proposes a Hessian-free Newton method for solv-

ing large-scale convex functions with an L1 regularization

term. These problems arise in supervised machine learning

models in which it is important to seek a sparse parameter

vector. The proposed method operates in a batch setting,

which is well suited for parallel computing environments,

and employs sub-sampled Hessian information to accelerate

progress of the iteration. The method consists of two phases,

an active-set prediction phase that employs first-order and

second-order information, and subspace phase that performs

a Newton-like step. Numerical results on a speech recogni-

tion problem illustrate the practical behavior of the method.

Index Terms— Logistic Regression, L1 Regularization,

Newton Method, Iterative Shrinkage, Hessian-Free Newton.

1. INTRODUCTION

Sub-sampled Hessian Newton methods have recently been

proposed for machine learning and stochastic optimization

applications [1, 2]. The novel feature in these batch methods

is the use of a much smaller sample for Hessian computations

than for function and gradient evaluations. This sub-sampling
Hessian strategy overcomes the main obstacle in the appli-

cation of Newton-like methods to some large-scale machine

learning problems, namely the prohibitive cost of forming the

Hessian, or computing Hessian-vector products. By choos-

ing a small enough Hessian sub-sample, the cost of the itera-

tion is comparable to the cost of one gradient evaluation, but

the resulting algorithm is much faster than a gradient method.

Sub-sampled Hessian Newton methods of this kind have been

applied successfully to multinomial logistic regression prob-

lems [1] and neural networks [2]. In those studies, the under-

lying objective function is smooth.

In this paper, we study the design of a sub-sampled Hes-

sian Newton method for non-smooth optimization problems

of the form

J(w) = f(w) + c||w||1, (1)

where f is a smooth convex function and c is a constant that

determines the weight of the L1 regularization term. The

function f often has the form

f(w) =
1

N

N∑
i=1

�(h(w;xi), yi), (2)

where � is a loss function, (xi, yi) denote the training points,

h is a linear function, and N is the size of the training set.

In the last 15 years, many first-order methods have been

designed for solving problem (1), using stochastic or batch

approaches; see [3, 4] and the references therein. More re-

cently, several methods have been proposed that incorporate

second-order information, either as an integral part of the it-

eration [5] or as a means to refine the solution and yield fast

final convergence [6, 7, 8]. In this paper, we propose a method

that operates in a batch setting and employs sub-sampled Hes-

sian information at every iteration. The design of the method

is guided by the observation that sparse solutions can be ob-

tained quickly by a combination of a prediction phase that

makes a tentative guess of zero components in the solution

vector, and a subspace phase that improves upon this guess

through the use of second-order information.

2. HESSIAN SUB-SAMPLING

The proposed algorithm employs second-order information

based on a small fraction of the training points used in the

function and gradient computation. At the beginning of each

iteration, the algorithm chooses a set Hk ⊂ {1, 2, . . . , N},
and defines the Hessian approximation

Bk :=
1

|Hk|
∑
i∈Hk

∇2�(h(wk;xi), yi). (3)

Thus, Bk is the Hessian of the batch approximation to (2)
based on the sample Hk. The matrix (3) is never formed; in-

stead, the algorithm computes products of Bk times vectors

— and these products can be coded directly. An observation

that lies at the heart of our approach is that the cost of a multi-

plication of Bk times a vector increases linearly with the size

ofHk. Specifically, the cost of a Hessian-vector product is of

order O(|Hk|/N) times the cost of a gradient evaluation.
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3. TWO PHASE APPROACH

3.1. Overview

The objective function (1) is not smooth, and it is difficult

to design a second-order method for minimizing it directly

without incurring a high computational cost. To resolve this

difficulty, we follow a two-phase approach based on the ob-

servation that the function J : Rn → R is smooth in the

relative interior of any given orthant in Rn.

The goal of the prediction phase is to identify an orthant

Ω that may contain the solution of the problem. In our al-

gorithm, the prediction phase is based on iterative shrinkage,

a method that primarily uses first-order information. The or-

thant defined by the prediction phase defines the sign of each

component of w and also identifies variables that should be

kept at zero. In the subspace minimization phase, a quadratic

model of J is minimized over the space of the remaining vari-

ables. The minimization is performed approximately, over Ω,

using a Hessian-free conjugate gradient (CG) method [9]. A

distinctive feature of our method is that the Hessian of the

quadratic model, which is given by (3), is constructed using a

small sample of training points — as small as 5% of the size

of the sample used in the computation of the function and

gradients. This makes each CG iteration very inexpensive,

and makes it practical to perform the subspace minimization

phase at every iteration of the algorithm.

3.2. Prediction Phase

The prediction step is based on the iterative shrinkage method

[10], which at the current iterate wk, generates a point wc
k as

follows:

wc
k = argmin

z

1
2 ‖z − uk‖22 + cαk ‖z‖1 ,

where uk = wk − αk∇f(wk) and αk is a steplength param-

eter. The component wise solution of this problem is given

by

[wc
k]

i = sign(ui
k)max

(|ui
k| − cαk, 0

)
. (4)

In our method, we define the steplength as

αk =
∇f(wk)

T∇f(wk)

∇f(wk)TBk∇f(wk)
, (5)

where Bk is the sub-sampled Hessian defined in (3). This

choice of αk corresponds to the minimizer of a quadratic

model of f along the direction −∇f(wk). Our computa-

tional experience suggests that (5) is more effective than the

Barzilai-Borwein parameter used in [3].

To define the active orthant, it is convenient [5] to intro-

duce the vector

zik = sign([wc
k]

i). (6)

The variables wi with zik = 0 are kept at zero during the

subspace minimization phase, while the rest of the variables

are free. The active orthant is defined as

Ωk = {w | sign(wi) = sign(zik)}. (7)

Modification to the Iterative Shrinkage Step. We have ob-

served that the prediction made by the iterative shrinkage step

is is not always effective. Iterative shrinkage allows nonzero

variables to move, but the subspace phase, which uses second-

order information, may reset a large fraction of these variables

to zero. To avoid the unnecessary projection of variables to

zero, we could allow the prediction phase to move a variable

only if the sign of the iterative shrinkage step coincides with

the sign of a Newton step.

Specifically, at the start of the prediction phase, we com-

pute a step dNk step by solving the system

Bkd = −∇f(wk),

approximately, using the Hessian-free conjugate gradient

method [9], where Bk is the sub-sampled Hessian defined

in (3). A component [wc
k]

i such that [∇f(wk)]
i[dNk ]i > 0

is considered to be potentially unreliable, and our strategy is

to reset it to the current iterate [wk]
i. This is equivalent to

setting αk = 0 for the unreliable components and letting αk

be defined by (5) for the other components. The modification

becomes

[wc
k]

i ←
{
[wc

k]
i if [dNk ]i ×∇f(wk)

i ≤ 0

[wk]
i otherwise.

(8)

This modification need not be applied at every iteration. Our

experience indicates that it is most useful in the early stages

of the optimization. In order to ensure global convergence,

we need to impose the requirement that the modification (8)
be applied only a finite number of times.

3.3. Subspace Minimization and Line Search

Having determined the prediction point wc
k, and the corre-

sponding orthant Ωk through (6), (7), (8), we minimize a

quadratic model of the objective function, over the space of

free variables. Specifically, we apply the Hessian-free CG

algorithm to compute an approximate solution ws
k of the

quadratic problem

min
w

bTk (w − wc
k) +

1
2 (w − wc

k)
TBk(w

c − wk)

s.t. wi = 0, for all i such that zik = 0

where

bk = gk +Bk(w
c
k − wk), gk = ∇f(wk) + czk, (9)

and zk is defined in (6). The choice (3) for Bk is motivated by

the fact that in the interior of any orthant in Rn, the Hessian

of J is equal to ∇2f . As noted above, Bk is never formed
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explicitly, but its product with vectors is coded directly; see

e.g. [1] for an example of this computation in a multinomial

logistic regression problem.

To ensure decrease in the objective function, the algorithm

performs a backtracking line search along a piecewise linear

path that starts at ws
k and ends at wk. Specifically, the algo-

rithm first tries to compute a step length α̂k ∈ (αmin, 1] that

satisfies the sufficient decrease condition

J(P (wc
k + α̂kdk)) ≤ J(wk) + σgTk (P [wc

k + α̂kdk]− wk),
(10)

where σ = 10−4, gk is defined in (9), dk = ws
k − wc

k, and

P (·) denotes the orthogonal projection onto the orthant Ωk,

i.e.,

P (wi) =

{
wi if sign(wi) = sign(zik)

0 otherwise.
(11)

If this search is unsuccessful, the line search moves to the

iterative shrinkage path s(α̃) given by

si(α̃) ≡ sign(ui
k(α̃))max

(|ui
k(α̃)| − cα̃, 0

)
, α̃ ∈ (0, ᾱ0

k],

where uk(α̃) = wk − α̃∇f(wk) and ᾱ0
k is given by the right

hand side in (5). By backtracking along this path, the line

search finds a steplength α̃k that yields sufficient decrease in

J .

In summary, the new iterate of the algorithm is defined as

wk+1 =

{
P [wc

k + α̂kdk] α̂k > αmin

s(α̃k) otherwise.

We refer to the method just outlined as Algorithm I.

4. RELATED WORK

The orthant wise limited memory BFGS method (OWL) [5]

has some similarities with the method proposed in this paper.

The identification phase in OWL can be seen as an infinites-

imal line search along the steepest descent direction of the

non-differentiable function J , at the current iterate wk. After

the active orthant has been identified, OWL computes a (pro-

jected) limited memory BFGS step in the space of the free

variables. OWL has proved to be effective in various L1 reg-

ularized problems in machine learning, but its convergence

properties are unknown to us (as explained in [11] the conver-

gence proof given in [5] is not correct).

The two-phase methods described in [6, 12] employ

second-order information in the subspace phase, but differ

in significant ways from the method described here. For ex-

ample, the method in [6], which is closer in spirit to ours, does

not perform a sub-space phase at every iteration, employs an

interior point method in the subspace phase, which prevents

this phase from forcing components of the solution to zero

early on, and does not employ a sub-sampling approach to

reduce the cost of the CG step.

The convergence properties of the method proposed in

this paper will be analyzed in a future paper; they follow from

the results given in [1, 6, 13]. A more interesting question is

to establish a complexity bound on the total computational ef-

fort of the algorithm, when implemented in a dynamic setting

where the sample size used for function and gradient evalu-

ations increases automatically during the progression of the

optimization; see [11].

5. NUMERICAL TESTS

Figure 1: Number of nonzeros vs CPU time

We compare the performance of the sub-sampled Hessian

L1 Newton Method (Algorithm I) and the OWL method on

a larger version of the problem described in [1], involving

multi-class classification of speech frames. We note that spar-

sity in the final solution normally yields lower generalization

error. The training set, which was provided by Google, has

N = 191607 training points and n = 30315 parameters in w.

The test problem was designed to be small enough to be run

on a multi-core workstation, but sufficiently complex to be

representative of production-scale speech recognition prob-

lems.

For the OWL method we set the memory size to 20 (us-

ing a memory of 5 gave similar results), and employed the

implementation provided in LibLBFGS.

For Algorithm I, we imposed a limit of 20 CG iterations

in the subspace phase, and set the Hessian sub-sampling to

be 5%, i.e., |Hk|/N = 0.05. Although the sample size |Hk|
is constant throughout the progression of the algorithm, the

sampleHk itself must be chosen afresh at every (outer) itera-

tion of Algorithm I.

The initial point is given by w0 = 0 in both methods.

Figure 1 plots the number of non-zeros in the solution wk,

and Figure 2 the probability of correct classification, defined

as exp(−J(wk)), as a function of the number of accessed

data points. The latter is a measure of cpu time; it considers
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the cost of the function, gradient and Hessian-vector products.

Figure 2: exp(−J(wk)) vs CPU time

We observe that Algorithm I is more effective than OWL

in this test. The greatest benefit is seen in the generation of a

sparse solution early on in the iteration.

Controlled tests indicate that the subspace phase plays a

crucial role both in the speed of Algorithm I and in its ability

to generate a sparse solution quickly. Figure 3 illustrates the

behavior of Algorithm I as the number of CG iterations is in-

creased from 5 to 20. Note that performance improves with

the number of CG iterations, which corresponds to using Hes-

sian information more thoroughly. (Increasing the number of

CG iterations beyond 20 is not beneficial in this problem; the

reduction in iterations does not overcome the increased cost

of the Newton step computation.)

Figure 3: Number of nonzeros vs CPU time

6. CONCLUSION

We described a second-order batch method for machine learn-

ing models that include an L1 regularization term. The nov-

elty of the approach lies in the use of sub-sampled Hessian in-

formation in a subspace minimization that plays a prominent

role in the algorithm. Numerical tests on a speech recognition

problem show that the use of second-order information accel-

erates convergence and promotes the fast generation of sparse

solutions.
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