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ABSTRACT

Over the past few decades, a variety of specialized approaches have
been proposed to solve large problems in speech recognition. Con-
ventional optimization techniques have not been widely applied, be-
cause the problems do not readily admit an objective for evaluating a
given set of parameters and because of the large number of parame-
ters. This situation is changing, due to recent developments in algo-
rithmic optimization. In this paper, we review the specialized algo-
rithms, including methods derived from the extended Baum-Welch
(EBW) approach, Rprop, and GIS. We discuss optimization frame-
works that could also potentially be applied, and outline some con-
nections between the optimization methods and existing specialized
methods.

Index Terms— GIS, auxiliary function, Rprop, EBW

1. INTRODUCTION

Over the past few decades, a variety of specialized approaches have
been proposed for optimizing generative models for conditional
probability densities. Conventional optimization techniques have
not been widely applied, because the problems do not readily admit
an objective for evaluating a given set of parameters and because of
the large number of parameters. One of the approaches to optimize
conditional likelihoods is a family of algorithms, called extended
Baum-Welch (EBW) ([5], [6], [7]), that is the current state-of-the-
art in speech processing with hidden Markov models. In this paper,
we review the specialized algorithms, including methods derived
from the extended Baum-Welch (EBW) approach, Rprop, and GIS.
We discuss optimization frameworks that could also potentially be
applied, and outline some connections between the optimization
methods and existing specialized methods.

Section 2 contains a brief overview of EBW methods. In Sec-
tion 3 we describe A-functions, which form the basis of several algo-
rithms, and outline some techniques for constructing them. Section 4
describes an explicit auxiliary function for discriminative training
of Gaussian mixture models of HMMs, while Section 5 describes
gradient steepness metrics associated with A-functions. The Rprop
approach is discussed in Section 6, while Section 7 discusses gen-
eral optimization methodologies and speculates about their possible
application to speech recognition problems.

2. EBW

Let f(ξ) be some differentiable function in variables ξ = {ξt(θ)}
where θ is some parameter. Let ct(θ) = ξt(θ)

∂f(ξ)
∂ξt

. Consider the
case of multidimensional multivariate Gaussian densities:

ξt =
|Σ|−1/2

(2π)n/2
e−1/2(xt−μ)TΣ−1(yi−μ)

(1)

where XT
1 = {xt ∈ X}, t = 1, ..T is a training sample. Then the

EBW updates for parameters θ = {μ,Σ} are defined as following.

μ̂ =

∑
t ct(θ)xt +Dμ∑

t ct(θ) +D
(2)

Σ̂ =

∑
t ct(θ)xtx

T
t + C(μμT +Σ)∑

t ct(θ) +D
− μ̂μ̂T

(3)

The proof that the transformations (2) yield growth in the function
f , for sufficiently large D, can be seen from Section 3.2.

We summarize a few known results on EBW. It was shown in
[11] that a unified objective function that includes as special cases
two major approaches in discriminative training — Maximum Mu-
tual Information (MMI) and Minimum Classification Error (MCE)
— can be optimized using EBW updates (2). In [12], it was shown
that preventing update models to be too far from initial models in the
EBW update formula allows additional improvements in the recog-
nition accuracy. It was shown in [13] that EBW for a MMI objec-
tive function comes from a regularization that is based on Kulback-
Leibler (KL) divergence between two probability distributions.

3. GENERALIZATIONS FOR EBW

In this section following [8] we show that EBW process is a spe-
cial case of transformations that involve various generalizations of
auxiliary functions.

3.1. A-functions

Let f(x) : U ⊂ R
n → R be a real valued differentiable function in

an open subset U . The function Af = Af (x, y) : U × U → R is
called an A-function for f if it is twice differentiable in x ∈ U for
each y ∈ U and if the following properties hold.

1 Af (x, y) is a strictly convex or strictly concave function of x
for any y ∈ U . (Recall that a sufficient condition for a twice
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differentiable function to be strictly concave or convex over
some domain is that its Hessian function is positive definite
or negative definite in the domain, respectively.)

2 Hyperplanes tangent to manifolds defined by z = gy(x) :=
Af (x, y) and z = f(x) at any x = y ∈ U are parallel to
each other, that is,

∇xAf (x, y)|x=y = ∇xf(x). (4)

If in addition Af is concave and lower bounded — that is,
Af (x, y) ≥ f(x) for any x, y ∈ U — then Af is called an auxil-
iary function.

3.2. LSAF

The A-function for f define above can be used to deduce iterative
methods for maximizing f .

Let θ0 be some point in U and U � θ̃0 be a solution of the
nonlinear algebraic equation ∇θAf (θ, θ0)|θ=θ̃0

= 0. (θ̃0 is the
minimizer of Af (θ, θ0) if Af is convex and the maximizer if Af

is concave.) We have the following growth statement concerning
small steps along the direction defined by θ̃0 − θ0: Defining

θ(α) := αθ̃0 + (1− α)θ0, (5)

we have for sufficiently small |α| �= 0 that f(θ(α)) > f(θ0) where
α > 0 if Af (θ, θ0) concave and α < 0 if Af (θ, θ0) convex. If Af

is an auxiliary function, then the growth property for f still holds for
|α| = 1 in (5). In the latter case, computation of θ̃0 and θ(1) repre-
sent, respectively, the E and M steps in Expectation-Maximization
(EM) algorithm. An example of an A-function is the following (as-
sociative) function ∑

t

ct(θ0) log ξt(θ) (6)

where ξt(θ) are Gaussian, Poisson, Gamma densities, or exponential
family of densities. (Exponential family of densities are defined as
exp{θT φ(xt)}

Z(θ)
, where the vector xt is a base observation, the vector

function φ characterizes the exponential family, and Z is the parti-
tion function).

4. AN EXPLICIT AUXILIARY FUNCTION FOR
DISCRIMINATIVE GAUSSIAN MODELS OF HMMS

This section discusses construction of an auxiliary function for the
discriminative training of Gaussian mixture models. Existing auxil-
iary functions such as Expectation-Maximization (EM) and Gener-
alized Iterative Scaling (GIS) do not directly apply to this problem,
because EM is for generative training of Gaussian models, while GIS
is for MMI training of log-linear models without hidden variables.

An auxiliary function for discriminative Gaussian models can
be derived by combining the auxiliary functions associated with EM
and GIS [1, 2, Section 6.4]. More precisely, apply the auxiliary func-
tion associated with EM to the discriminative training objective for
the Gaussian models. This step basically “eliminates” the hidden
variables. We could stop here and use numerical optimization tech-
niques to solve the M-step. Instead we rewrite the conditional prob-
ability induced by the Gaussian model as a log-linear model. The
feature functions are of the type

fpσd(x, s) = δsσ · (xtd)
(p), p ∈ {0, 1, 2}

where σ, s denote the mixture and d refers to the feature component.
This second step does not add any flexibility to the model; the log-
linear model can be converted to a valid Gaussian model after opti-
mization [3]. This reparameterization leads to a linear combination
of training objectives for log-linear models, so GIS applies. Opti-
mization of the resulting auxiliary function leads to GIS-like update
rules:

θt+1
psd = θtpsd +

1

F
log

(∑
t c

(num)
ts (xtd)

p∑
t c

(den)
ts (xtd)p

)

with the numerator and denominator occupancies c
(num)
ts and c

(den)
ts .

Non-negative feature functions that sum up to the feature count F =
maxt,s

∑
i fi(xt, s). (a requirement for GIS), are assumed without

loss of generality. Like the iteration constant D for EBW, the feature
count controls the convergence speed. In contrast to the iteration
constant D in (2), the feature count F can depend on the training
data. This does not affect the constructivity of the auxiliary function
as long as the quantity can be explicitly computed before training.

This auxiliary function can be extended to other training objec-
tives in the rational form such as Minimum Phone Error (MPE) [7]
and to HMMs. In case of HMMs, the feature count scales with the
number of frames in the sentence, which can slow down the conver-
gence speed considerably.

5. GRADIENT STEEPNESS METRICS ASSOCIATED
WITH A-FUNCTIONS

The purpose of this section is to analyze how different gradient tech-
niques associated with A-functions are related between themselves.
Specifically, one can interpret parameter update rules as aiming di-
rectly to improve recognition accuracy, that is, aiming to maximize
the objective f .

In notation of the section of Section 2, let

Af (θ, θ0) = B({ξt(θ)}, {ξt(θ0)})
be A-function for f . Consider the following gradient-ascent step:

θ(α) = θ + α∇θAf (θ, θ̄)|θ̄=θ. (7)

Let us also recall the update of parameters from Section 3.2, that is,

θ̂(α̂) = θ + α̂(θ̃ − θ) (8)

where θ̃ is a solution of

∇θ̄Af (θ̄, θ)|θ̄=θ̃ = 0. (9)

We say that (8) and (7) belong to the same family of solutions if for
any sufficiently small α there exist α̂ such that

|θ̂(α̂)− θ(α)| < O(α2). (10)

In other words, gradient-ascent and A-function-based updates are
the same up to first order. It can be shown that (10) holds in a case
of diagonal Gaussian densities when Af (θ, θ0) is chosen to be the
function (6). It was shown in [9] that EBW updates belong to the
same family as updates via (8) A-function. Thus, EBW updates and
gradient descent updates for diagonal Gaussian densities belong to
the same family. (This equivalence of EBW and gradient descent
techniques was stated in [11].)

If Af used to derive (8) satisifes the growth property, then in the
linearization defined by

f(θ̂(α))− f(θ) = T (θ, θ̃) ∗ α+O(α2) (11)

5234



we have
T (θ, θ̃) ≥ 0. (12)

For Gaussian densities, the paper [10] gives the exact expression for
the term T (θ, θ̃) (θ = (μ, σ), θ̃ = (μ̃, σ̃)), which is proportional to
weighed sum of Euclidean distances (μ̃−μ)2 and (σ̃2−σ2), where

μ̃ =

∑
ct(μ, σ)xt∑
ct(μ, σ)

, σ̃2 =

∑
ct(μ, σ)x

2
t∑

ct(μ, σ)

are solutions of (9) ([9]). One can introduce metrics T (θ, θ̃) in ad-
vance (for example as Kullback-Leibler distance between densities
ξt(θ̃) and ξt(θ)). Following (8), one can define a recursion

θ̂(α̂) = θ + α̂. ∗ (θ̃ − θ) (13)

where α̂ is a vector and .∗ is an element-wise product defined in such
a way that (11) still holds. (Examples of such updates are given in
[9] for Gaussian distributions.) Another way to change metrics is to
make them proportional to accuracy measures (for example, frame
or phonetic accuracy). Specifically, one can show that MPE method
produces scaling of ct coefficients that induces scaling on a metric
T .

6. RPROP

Rprop, short for resilient backpropagation, is a gradient-based, batch
update algorithm that uses adaptive step sizes. It was originally in-
troduced for training of multilayer feedforward networks [19], but
recent reports indicate its successful deployment in speech recogni-
tion [20, 4].

Rprop only uses the sign of the partial derivatives of the training
objective for the parameter update

xt
i = xt−1

i + sign
(
∂f(xt)

∂xi

)
Δt

i.

There is a separate step size Δt
i ≥ 0, for each parameter xt

i , updated
independently at each iteration according to a simple heuristic. If the
sign of the partial derivative changed over the last iteration, the step
size is reduced by the positive factor η− < 1. If the partial derivative
kept the same sign, the step size is increased by the factor η+ > 1.
That is, we have

Δt
i =

⎧⎪⎨
⎪⎩
η+Δt−1

i , if
∂f(xt−1)

∂xi

∂f(xt)
∂xi

> 0

η−Δt−1
i , if

∂f(xt−1)
∂xi

∂f(xt)
∂xi

< 0

0, otherwise.

The factors η+ and η− are set empirically; values that work well in
practice are η+ = 1.2 and η− = 0.5. A fixed value Δ0

i := Δ is
chosen for the initial step size in each component. The parameter
constraints for Gaussian mixture models such as the normalization
of the mixture weights are re-imposed after each iteration.

We compare the performance of Rprop with EBW on two large-
vocabulary continuous speech recognition tasks: European Parlia-
ment Plenary Sessions (EPPS) English from the TC-STAR project
and Mandarin Broadcasts from the GALE project. In both cases, the
standard RWTH setup is used. (See [4] for more details on the tasks
and the specific setups.) Comparative results for EBW and Rprop
are shown in Table 1 for Minimum Phone Error (MPE) training. The
Maximum Likelihood (ML) baseline is added for comparison.

The two optimization algorithms achieve similar error rates
on these two tasks, and both improve on ML. EBW converges

Table 1. Comparison of EBW and Rprop for discriminative training,
word error rate (WER).

Task Criterion Optimization WER [%]
Eval06 Eval07

EPPS English ML EM 10.8 12.0
MPE EBW 10.2 11.5

Rprop 10.3 11.5

Mandarin ML EM 17.9 11.9
Broadcasts MPE EBW 17.0 11.2

Rprop 16.5 11.1

in around ten iterations, typical of Gaussian mixture models with
globally pooled variances. Rprop takes roughly the same number
of iterations to converge for the conservative, default initial step
size. For more aggressive initial step sizes, the training speeds up
considerably, although at the risk of reduced convergence stability.

7. OPTIMIZATION ALGORITHMS

The frameworks and algorithms described above, which have been
developed mainly in the speech processing and statistics communi-
ties, have many connections to theory and algorithms for general
optimization problems. These connections open up the possibility
of applying many other recently developed optimization techniques
to problems in speech recognition, including algorithms for sparse
optimization and regularized logistic regression. We discuss some
of these connections and mention a few related optimization ap-
proaches that may be adaptable to speech processing.

Approximation techniques similar to auxiliary functions have
been developed recently in other contexts, for example regularized
regression and compressed sensing. A simple function that satisfies
the property (4) is

Af (x, y) = ∇f(y)T (x− y)− 1

2α
‖x− y‖22, (14)

for some α > 0 that plays the role of a line-search or trust-region
parameter. The unconstrained minimum of (14) yields a steepest-
ascent step. (The relationship between steepest-ascent and model-
based steps was noted for several cases in Section 5.) If f is to
be minimized over a convex set, (14) can be minimized over the
same set to yield a gradient projection approach. In either case, the
parameter α can be adjusted as needed to produce an improvement
in f .

The approach based on (14) can be extended further to regular-
ized optimization problems of the form

max f(x) + h(x),

where h(x) is a (typically nonsmooth but simple) function that is
used to induce some desired structure in the solution. (For example,
setting h(x) = −τ‖x‖1 for some parameter τ > 0 tends to produce
solutions x with few nonzeros.) An iteration scheme for this problem
can be derived by replacing f with the function Af :

xt+1 := argmax
z

∇f(xt)T (z−xt)− 1

2αt
‖z−xt‖22+h(z). (15)

See [15] for application of this approach to compressed sensing
problems, where f represents a linear-least squares loss. The paper
[16] analyzes this approach for the case of f a logistic loss and
h an �1 regularizer. This paper also describes acceleration of the
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asymptotic convergence rate by using reduced Newton steps on the
nonzero set identified by the basic step (15).

Methods that improve on first-order search directions are readily
available for large-scale unconstrained optimization problems. L-
BFGS ([21]), a limited-memory quasi-Newton method that requires
storage of few vectors of length n, has already been tried with suc-
cess ([23, 24]). Alternatives that could be tried include nonlinear
conjugate-gradient and simple approaches such as heavy ball. (The
latter method requires estimates of the extreme eigenvalues of the
Hessian of f , but these may be readily available in some cases.)

We list here some possible directions for future research. Coor-
dinate relaxation methods, in which steps are taken in just a subset
of the variables on each iteration, have proved useful in other con-
texts and could be tried here. Another important class of optimiza-
tion approaches that go by the general name of “stochastic gradi-
ent” methods [17] may also be useful for solving versions of these
problems in which the data sets are large. Each iteration of these
methods requires not an exact gradient of the loss function (which
may entail a scan through the full data set) but rather an approxi-
mate gradient based on a small subset of the data. These approaches
have proved highly effective in fast identification of approximate so-
lutions to support-vector machine problems in machine learning; see
for example [18].

The Rprop approach is amenable to some analysis [22] (and
possibly improvement) using techniques from optimization. Around
1990, several optimization researchers analyzed back-propagation
methods in terms of incremental gradient methods, and demon-
strated an equivalence. The memory and path dependence that is
inherent in the choice of steps in Rprop will make analysis more
difficult.

8. CONCLUSIONS

In the paper we gave overview of some popular optimization meth-
ods for discriminative training in speech processing. Specifically we
described EBW techniques and some associated with EBW methods.
We also gave description of some general optimization methods that
can be considered as alternatives to EM algorithms.
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