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ABSTRACT

In this paper, we propose an algorithm for timing synchro-
nization that attains fundamental bounds derived by Weiss
and Weinstein. These bounds state that, in addition to im-
proving with time-bandwidth product and signal-to-noise ra-
tio (SNR), timing accuracy also improves as the carrier fre-
quency gets larger, if the SNR is above a threshold. Our al-
gorithm essentially follows the logic of the Weiss-Weinstein
bound, and has the following stages: coarse estimation using
time domain samples, fine-grained estimation using a New-
ton algorithm in the frequency domain, and final refinement
to within a small fraction of a carrier cycle. While the results
here are of fundamental interest, we are motivated to push the
limits of synchronization to enable the tight coordination re-
quired for emulating virtual antenna arrays using a collection
of cooperating nodes.

Index Terms— timing synchronization, estimation, New-
ton method

1. INTRODUCTION

We revisit the classical problem of timing estimation based on
a bandpass signal in additive white Gaussian noise (AWGN).
It was shown decades ago by Weiss and Weinstein [1, 2] that,
in principle, it is possible to obtain timing accuracies that
improve not only with time-bandwidth product and SNR, but
also with the carrier frequency, as long as the SNR is large
enough. In this paper, we present an algorithm that attains
the Weiss-Weinstein bounds, and provides concrete intuition
regarding the structure of these bounds. Startlingly good
performance is feasible: picoseconds accuracy for a carrier
frequency of 1 GHz, bandwidth of 50 MHz, duration of 10
microseconds, and SNR of 10 dB. Furthermore, while such
timing accuracies are orders of magnitude smaller than the
inverse bandwidth, they can be attained with digital signal
processing (DSP) implementations based on samples at the
Nyquist rate or a small multiple thereof.

The problem of pure delay estimation, while classical in
its origin, has not received much attention in recent years,
perhaps because in most applications of interest (e.g., wire-
less communication), signals encounter multipath propaga-

tion. Especially in communications applications, the over-
whelming emphasis has been on channel estimation that is
“good enough” for communication, based on discrete time
models at Nyquist rate or a small multiple thereof. Interest-
ingly, we are motivated to revisit the classical problem of de-
lay estimation because of our interest in emerging applica-
tions in cooperative communication. Specifically, we would
like to be able to emulate a virtual antenna array using a col-
lection of cooperating nodes, and to this end, would like to
tightly coordinate their timing and carrier synchronization.
If the links between neighbors in this cooperative cluster are
near line-of-sight, then exchanges of timestamped messages
can enable the nodes to synchronize their clocks, assuming
symmetry in propagation and circuit delays. For the remain-
der of this paper, however, we do not discuss such applica-
tions, and focus instead on the fundamental problem at hand.

We note that there has been extensive research on timing
estimation algorithms spanning several decades [3, 4, 5, 6, 7].
A key to the success of our timing estimation algorithm, how-
ever, is the use of a Newton algorithm in the frequency do-
main, an idea which we borrow from Newton-based frequency
estimation algorithm from more than three decades ago [8].
Another important source of inspiration is provided by the
Weiss-Weinstein bounds themselves, which guide us to sim-
ple high-SNR refinements of a baseband estimate.

2. MODEL

The transmitter sends the passband waveform

up(t) = Re
(
b(t)ej2πfct

)
, 0 ≤ t ≤ To, (1)

where b(t) is a complex baseband waveform designed to have
good autocorrelation properties, approximately timelimited to
observation interval To, approximately bandlimited to band-
width W , and fc is the carrier frequency. The received pass-
band signal is given by (up to scale)

yp(t) = ARe
(
b(t− τ)ej2πfc(t−τ)

)
+ np(t)

where np(t) is passband WGN, and τ is the delay to be esti-
mated. We emphasize that the delay is being estimated with
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respect to the receiver’s timebase. That is, t = 0 is an arbi-
trary time reference at the receiver, and it seeks to decide what
is the best way of τ such that the received noisy signal best
matches the noiseless template Re

(
b(t− τ)ej2πfc(t−τ)

)
. It

can be shown that, for typical time durations of interest and
typical carrier frequency uncertainties, carrier frequency off-
sets between transmitter and receiver can be ignored, at least
for stationary nodes.

Downconverting (recall that this is with respect to the re-
ceiver’s local oscillator ej2πfct), we obtain the complex base-
band received signal

y(t) = b(t− τ)e−j2πfcτ + n(t) (2)

where n is complex WGN. We will actually work with the dis-
crete time signal obtained by sampling this at rate 1/T (typi-
cally a small integer multiple of the bandwidth W ),

3. ALGORITHM

While we implement the algorithm in discrete time, it is use-
ful to first sketch it in continuous time. We seek the maxi-
mum likelihood (ML) delay estimate, given by maximizing
the following cost function, based on the log likelihood for
the model (2):

Jbp(τ) = Re

(∫
y(t)b∗(t− τ)ej2πfcτdt

)
(3)

where the subscript denotes “bandpass.” The carrier term
ej2πfcτ is what enables us to get amazing accuracy in the
bandpass regime, but it is also responsible for rapid fluctua-
tions in the cost function that makes it difficult to pick out the
maximum directly. Accordingly, we adopt a multi-stage strat-
egy that mirrors the different stages of the Weiss-Weinstein
bound:
(a) First, treat the phase term e−j2πfcτ as a nuisance term,
and perform noncoherent delay estimation maximizing the
cost function Jnc(τ) = |

∫
y(t)b∗(t − τ)dt|2. This is a well

behaved cost function, whose maximization provides timing
accuracy that, in principle, improves with bandwidth (of b(t))
and SNR. As we shall see, we implement this in two stages,
passing through a “hypothesis testing” regime and a “fine-
grained estimation” regime.
(b) Once we have a delay estimate based on Jnc(τ), then we
pick the peak of Jbp(τ) nearest to it. For example, setting∫
y(t)b∗(t − τ)dt = rejθ (r ≥ 0), we can make a cor-

rection of size θ
2πfc

in the delay estimate in order to make
Jbp(τ) = r ≥ 0 (we also consider a more sophisticated re-
finement, described later). Of course, such refinements only
work when stage (a) has brought us to within a carrier cycle
of the true delay, which only happens when the SNR is large
enough to place us in the bandpass regime.

We have swept under the rug a key challenge in stage
(a). Given samples at the Nyquist rate (or a small multiple

thereof), how do we get estimation accuracies that are arbi-
trarily smaller than the sampling accuracy? Rather than time
domain interpolation strategies that depend in a complicated
manner on the transmitted waveform, it is effective to express
the cost function in the frequency domain:

Jnc(τ) = |

∫
y(t)b∗(t−τ)dt|2 = |

∫
Y (f)B∗(f)ej2πfτdf |2

(4)
In the frequency domain, it is easy to compute the derivatives
of the cost function with respect to τ , in a manner independent
of the choose of the pulse b, since they involve differentiating
a smooth complex exponential. Once we get close enough to
the true delay (e.g., using a discrete time matched filter), we
employ a Newton method to rapidly refine the delay estimate.

We now discuss discrete time implementation using sam-
ples of y(t) at rate 1/T , denoted by {y[n] = y(nT )}. The
corresponding samples of the baseband template waveform
b(t) are denoted by {b[n] = b(nT )}. We proceed in three
stages.

3.1. Stage 1: Hypothesis Testing

We begin by “hypothesis testing” style coarse delay estima-
tion, passing {y[n]} through the discrete time matched filter
bmf [n] = b∗[−n] and picking the peak. If the peak is at n̂,
then the corresponding continuous time coarse delay estimate
is τ̂1 = n̂T .

3.2. Stage 2: Fine-Grained Baseband Estimation

We are now going to maximize the cost function (4) using
the frequency domain expression for it. To get its discrete
time version, let M denote the smallest power of 2 at least as
large as the length of the discrete time received signal and the
discrete time template b[n] = b(nT ), compute the DFTs and
then “fftshift” them so that DC falls in the center. For these
centered DFTs, denoted by {Y [m]} for the received signal
and {B[m]} for the template, the mth frequency corresponds
to fm = m/(MT ), m = −M/2, ...,M/2 − 1. The discrete
time approximation of the noncoherent cost function can now
be written as J(τ) = |Q(τ)|2 where

Q(τ) =
∑
m

Y [m]B∗[m]ej2πfmτ (5)

We can now use the hypothesis testing based estimate τ̂1 as a
starting point for Newton iterations of the form:

τ̂ [n] = τ̂ [n− 1]−
J ′(τ̂ [n− 1])

J ′′(τ̂ [n− 1])

(τ̂ [0] = τ̂1). The first and second derivatives can be easily
computed in terms of the following DFT-like expressions.

T0 =
∑
m

Y [m]B∗[m]ej2πfmτ
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T1 =
∑
m

Y [m]B∗[m]fmej2πfmτ

T2 =
∑
m

Y [m]B∗[m]f2
mej2πfmτ

The derivatives are then given by (see appendix)

J ′(τ) = 4πIm(T0T
∗

1 )

J ′′(τ) = 8π2
(
|T1|

2 − Re(T0T
∗

2 )
)

We have found the Newton method to converge quickly,
within 2-3 iterations. We denote the estimate at the end of
this stage as τ̂2.

3.3. Stage 3: Bandpass Refinement

In our final stage, we go back to the ML cost function (3),
and applying Parseval’s identity, approximate it using DFTs
as J̃(τ) = Re (P (τ)), where

P (τ) =
∑
m

Y [m]B∗[m]ej2π(fm+fc)τ (6)

Comparing with (5), we realize that |P (τ)| = |Q(τ)|. Once
we have maximized |Q(τ)|, and hence |P (τ)|, to within a
small fraction of a carrier cycle in stage 2, maximizing the real
part of P (τ) can be accomplished by refining the delay esti-
mate to set the phase, or the imaginary part, of P (τ) to zero. If
the refinement is small enough (small fraction of a carrier cy-
cle), it does not substantially change |P (τ)| = |Q(τ)|, whose
variation is governed by the inverse bandwidth.

1. One-shot adjustment. In this method, we perturb the
delay to set the phase of P (τ) to zero, resulting in the
following delay estimate:

τ̂3 = τ̂2 −
arg (P (τ̂2))

2πfc

2. Newton-based adjustment. A more sophisticated re-
finement is to drive G(τ) = Im(P (τ)) to zero using
another Newton stage, starting from τ = τ̂2. This cor-
responds to the iterations

τ̂ [n] = τ̂ [n− 1]−
G(τ [n− 1])

G′(τ [n− 1])

= τ̂ [n− 1]−
Im(S0)

2πRe(S1)
(7)

where

S0 =
∑
m

Y [m]B∗[m]ej2π(fm+fc)τ

S1 =
∑
m

(fm + fc)Y [m]B∗[m]ej2π(fm+fc)τ (8)

are analogous to the terms T0, T1 defined earlier for
baseband estimation in stage 2, except for having a car-
rier term. See appendix.

4. SIMULATION RESULTS
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Fig. 1. Attaining the Weiss-Weinstein Bound

Figure 4 shows the Weiss-Weinstein bound [1, 2] and the
simulated performance of our algorithm for a typical set of
parameters. There is a nice interpretation for the various re-
gions of the bound. For very low SNR, the delay estimate is
garbage. As the SNR increases, we obtain accuracies close
to the inverse bandwidth; we call this the ”hypothesis test-
ing regime,” since this can be viewed as testing a set of dis-
crete delays spaced by the sampling interval, and picking the
best. As the SNR increases further, we can get accuracies
better than the inverse bandwidth by refining the hypothesis
testing based estimate; we term this the “baseband estimation
regime,” since the delay estimate here does not depend on the
carrier frequency. Finally, once the SNR is large enough that
the baseband estimate is within a carrier cycle of the truth, we
can get to within an even smaller fraction of a carrier cycle
by refining further; we can term this the “bandpass regime,”
where the accuracy improves with carrier frequency. As seen
from the plot, our algorithm essentially works through these
regimes in a succession of stages. The plot also shows that the
“one-shot” phase refinement algorithm is more robust than the
Newton-based method near the Weiss-Weinstein threshold,
but the latter gets closer to the CRLB at high SNRs, which
is given by

var(τ̂) ≥
(
8π2ρ

〈
f2

〉)−1
,

where ρ is the integrated SNR and

〈
f2

〉
=

∑
m(fc + fm)2|B[m]|2∑

m |B[m]|2
≈ f2

c

is the mean square frequency of the transmitted passband
waveform. The CRLB explicitly shows that sub-carrier
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period delay accuracy can be obtained. We also observe
that both methods “plateau” at high SNRs: the one-shot re-
finement beyond 40 dB, and the Newton based refinement
beyond 60 dB. While the plateau may be of little practical
significance (the error is better than 10−4 carrier cycles for
the one-shot adjustment and better than 10−6 carrier cycles
for the Newton-based adjustment), it raises an interesting the-
oretical question as to how to attain the CRLB at arbitrarily
high SNRs. A possible approach is to employ a composite
cost function at the last stage, which simultaneously accounts
for both the magnitude and phase of P (τ). We leave this as
an interesting topic for future work.

5. CONCLUSIONS

We have presented a low-complexity delay estimation algo-
rithm which approaches fundamental bounds. When the SNR
is high enough, the accuracy can be a very small fraction
of a carrier cycle, and improves with carrier frequency as
well as with time-bandwidth product and SNR. We have car-
ried out extensive simulations (not reported here due to lack
of space) showing that the results are insensitive to specific
waveform choices. Among the waveforms considered: up-
chirp, up-down chirp, BPSK modulation using a raised co-
sine pulse, and MSK. In recent over-the-air experiments at
BBN Raytheon, this algorithm was successfully used for fine-
grained delay estimation.

The algorithm is easily extended to colored noise by suit-
ably whitening the cost functions. Such extensions have been
tested successfully using measured data on noise and interfer-
ence in the television band, which has a highly colored power
spectral density, together with synthetically generated signals.

Important topics for future work include performance
evaluation and extensions of our algorithm to near-LoS envi-
ronments in which there is some multipath, and its applica-
tions at the system level for the cooperative communication
applications that motivated it.

Appendix: Derivatives for Newton method

Baseband estimation: Recall that J(τ) = |Q(τ)|2 =
Q(τ)Q∗(τ), where Q(τ) is given by (5). It is easy to see
that

Q′(τ) = j2πT1 , Q′′(τ) = −4π2T2

where T0, T1, T2 are as defined in Section 3.2. Since conju-
gation is interchangeable with differentiation with respect to
a real variable, we obtain the following expressions for the
derivatives of the noncoherent cost function:

J ′(τ) = Q(τ)Q′∗(τ) +Q′(τ)Q∗(τ)
= 2Re

(
Q(τ)Q′∗(τ)

)
= 4πIm(T0T

∗

1 )

J ′′(τ) = 2Q′(τ)Q′∗(τ) +Q(τ)Q′′∗(τ) +Q′′(τ)Q∗(τ)
= 2|Q′(τ)|2 + 2Re

(
Q(τ)Q′′∗(τ)

)
= 8π2

(
|T1|

2 − Re(T0T
∗

2 )
)

Bandpass refinement: We wish to drive

G(τ) = Im(P (τ)) =
P (τ)− P ∗(τ)

2j

to zero. Note that P (τ) = S0, so that G(τ) = Im(S0). Its
derivative is given by

G′(τ) =
P ′(τ)− P ′∗(τ)

2j

From (6), we see that P ′(τ) = j2πS1 and P ′∗(τ) =
−j2πS∗

1 . We therefore obtain after straightforward ma-
nipulations that G′(τ) = 2πRe(S1).
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